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Due to the constraints of limited effort and sampling error, observed species interac-
tion networks are an imperfect representation of the ‘true’ underlying community. Link 
prediction methods allow us to construct a potentially more complete representation 
of a given empirical network by guiding targeted sampling of predicted links, as well as 
offer insight into potential interactions that may occur as species’ ranges shift. Various 
data types can predict interactions; understanding how different kinds of information 
compare in their ability to predict links between different types of nodes is important. 
To this end, we compare random-forest regression models informed by combinations 
of phylogenetic structure, species traits, and latent network structure-hidden features 
inferred from the observed network topology – in their ability to predict interactions 
in a diverse network of fruiting plants and frugivorous birds in Brazil’s Atlantic forest. 
We found that for our dataset, latent structure derived through a single-value decom-
position approach was the most important determinant of model predictive perfor-
mance. While incorporating trait or phylogenetic information alongside latent features 
had little effect on discriminatory power, they did meaningfully increase overall model 
accuracy. Our results highlight the potential importance of latent structural features 
for predicting mutualistic interactions, and encourage a clear conceptual link between 
prediction performance metrics and the overall goal of predicting cryptic links.
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Introduction

Natural systems are characterized by a diverse set of interacting organisms; organizing 
these interaction sets into ecological networks can help us gain insight into community 
and ecosystem-level processes. Whether consumer–resource, host–parasite or mutualistic 
networks, understanding which species interact and why can give us insight into features 
as specific as the dynamics of one focal species all the way up to broad-scale patterns 
of community assembly and stability (Guimaraes 2020, Saravia et al. 2022). As such, 
ecologists have put a great deal of effort into observing and quantifying the interactions 
found in nature. However, like any data collection process, the sampling of ecological 
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networks is imperfect. No matter how much effort we put 
into characterizing a network, we may often miss observing 
interactions (links), or even interactors themselves (nodes) 
(Young et al. 2021). Moreover, the likelihood of observing a 
given interaction is related to factors such as the abundances 
of both interactors (Canard et al. 2014), with the total interac-
tion set of rare species less likely to be represented accurately 
(Olesen et al. 2011a, Cirtwill et al. 2019). Errors in the con-
struction of ecological networks, especially when biased, can 
lead to dramatic changes in network structure (Blüthgen et al. 
2008, Young et al. 2021). Ecological networks are also tempo-
rally dynamic. Local species turnover can add or subtract links, 
while regional-scale extinctions, evolution or range shifts may 
rewire existing connections (Olesen et al. 2011b).

Increasing sampling intensity or duration could solve 
these problems; as sampling effort increases it is less likely 
for rare links to go unobserved, allowing for a more accurate 
representation of the true network structure. However, the 
resources that can be devoted to sampling are limited. While 
the increasing availability of passive monitoring technologies 
(Quintero et al. 2022), as well efforts to extract interaction data 
from existing large-scale occurrence datasets (Putman  et  al. 
2021) may increase the availability on interaction data, the 
problem of incompletely sampling interactions will never fully 
disappear. A potential way to address this shortfall is to uti-
lize predictive approaches to decide which particular species or 
links should be targeted for additional sampling. To this end, 
the goal of predicting cryptic links between nodes allows us to 
more productively focus limited sampling resources (Terry and 
Lewis 2020). Predictive approaches also allow for us to pre-
dict network organization arising from novel complements of 
species. Identifying likely or unlikely possible linkages between 
invading species and already present interactors allows us to get 
a more complete picture of biotic constraints on invasibility 
(Minoarivelo and Hui 2016), and ultimately a better under-
standing of how species interaction networks may be altered 
by anthropogenic forcing.

Mutualistic interactions are dependent on a complex set 
of factors including life history (Ramos-Robles et al. 2018), 
phenotypic traits (Rafferty and Ives 2013), co-evolutionary 
history (Eriksson 2016), spatial and temporal distributions 
(Menke et al. 2012, Fricke and Svenning 2020, Laurindo et al. 
2020), as well other biotic interactions (Carreira et al. 2020). 
Incorporating information that either directly influences, or 
conveys information about these factors into link prediction 
frameworks should hopefully improve prediction perfor-
mance (Dallas et al. 2017). When applying link prediction 
in practice, we often have a variety of species and interaction-
level properties at our disposal, many of which may perform 
better or worse at predicting in certain types of networks or 
interactions. Understanding which types of information may 
be better or worse at predicting interactions in different con-
texts, however, is still an open avenue of research.

For plant–frugivore seed dispersal systems, information 
on species morphological traits (gape-width, fruit character-
istics, etc), may be at the root of why many taxa do or do not 
interact (Moran and Catterall 2010, González-Castro et al. 

2015, Bender  et  al. 2018). Trait matching link prediction 
approaches are able to use suites of continuous or discrete 
traits that either directly or indirectly influence interaction 
probability across a large number of species. These approaches 
perform well in situations when a small number of traits are 
linked to interaction probabilities across many species (e.g. 
flower and beak morphometric traits in flower–humming-
bird pollinator systems, Pichler et al. 2020). However, while 
trait data may give us insight into biological underpinnings of 
network connections we observe, they may not always be the 
most appropriate for link prediction methods. Interactions 
may be determined by a large suite of traits that individually 
contribute small amounts. Alternatively, traits relevant for 
one taxonomic group may not be relevant for another (gape 
size may be predictive for birds, but not for primates). Or 
interaction propensities may be controlled by traits difficult 
to quantify, such as microhabitat usage or foraging strategies. 
In all of these cases, trait-matching approaches may perform 
relatively poorly for some or all types of nodes in a given net-
work. In these cases, alternative information sources such as 
phylogenetic information or latent network structure may be 
useful for link prediction.

Using phylogenetic relationships between species may be 
useful for predicting links due to a number of factors. Firstly, 
traits that mediate species interactions may be phylogeneti-
cally conserved, allowing us to treat information about phy-
logenetic relationships between organisms as a proxy for 
traits. This assumption may be especially useful when traits 
governing interactions are numerous, hard to measure, or 
hard to identify. However, phylogenetic conservatism may 
break down at fine evolutionary scales due to local selection 
pressures on traits governing interactions (Pérez et al. 2007), 
making phylogenetic information an imperfect proxy in 
some contexts (Rafferty and Ives 2013). Additionally, while 
post hoc correlative investigation may be able to suggest 
potential traits of interest, this approach ultimately further 
abstracts from the mechanisms governing interactions even 
if prediction performance is quite good. Despite these short-
comings, in the use-case of targeting potential links for sur-
veillance (in essence a prediction problem), a phylogenetic 
approach may still be quite useful. In addition to proxying 
traits, as coevolutionary history between organisms can often 
be an important factor governing the presence of an interac-
tion, incorporating phylogenetic information may be vital to 
represent this linkage. While plant–frugivore networks may 
generally be less coevolutionarily linked and more asym-
metric (species with few interactions tend to interact with 
partners with many interactions) than some other classes of 
ecological networks (Wheelwright and Orians 1982, Jordano 
1987, Maglianesi et al. 2024), capturing nodes’ shared evo-
lutionary history may still be important for prediction. By 
definition phylogenetic methods require a phylogeny that 
includes all the species you intend to predict interactions for, 
causing potential limitations for predicting in systems where 
phylogenetic information may be incomplete. However, as 
the cost and time required to sequence non-model genomes 
has and continues to decline, the problem of data availability 
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continues to become a more and more surmountable barrier 
to prediction. To date, phylogeny-based interaction predic-
tions have been successfully implemented in a number of 
both mutualistic (Braga et al. 2021) and antagonistic (Pearse 
and Altermatt 2013) plant–animal network systems.

Independent of the phylogenetic relationships and traits 
of individual nodes in a network, latent structural features 
of networks themselves may actually be useful for predict-
ing missing links. In this context, the term ‘latent features’ 
refers broadly to hidden properties derived from the topol-
ogy of the interaction network, which can be approximated 
through any number of dimensionality-reduction approaches 
(Poisot et al. 2021). While there are a multitude of different 
methods used to create latent network features for interac-
tion prediction (single-value decomposition, random dot 
product graphs (Strydom et al. 2022), graph motif distribu-
tions, matrix factorization (Seo and Hutchinson 2018), etc), 
we focus on single-value decomposition, an eigendecomposi-
tion approach already used with some success in describing 
the structure of and assisting in the prediction of empirical 
food webs (Banville  et  al. 2023), host–virus associations 
(Poisot  et  al. 2021, 2023), and seed-dispersal interactions 
(Nunes Martinez and Mistretta Pires 2024). Once an exist-
ing network is known, calculating latent structural features 
is computationally tractable. While arguably even more 
agnostic to the mechanisms driving species interactions, this 
structural information may capture particular types of real 
linkages difficult to discover based on trait or phylogenetic 
information alone.

Prevailing interaction prediction approaches have often 
centered on a single information type, but recent work in 
host–parasite systems have emphasized the power of machine 
learning approaches to synthesize multiple data types to 
predict interactions (Strydom et  al. 2021). Despite the use 
of this variety of information streams for link prediction 
problems, studies directly comparing the predictive capacity 
of phylogenetic, trait, and latent features are few, and have 
not been applied in plant–frugivore systems. Beyond look-
ing at the performance of these feature classes independently 
however, knowing how they may be used together is another 
important avenue of research. By looking at the performance 
of models trained on combinations of different data types we 
are better able to understand whether different methods over-
lap in the types of links they predict well, and perhaps more 
importantly whether we can use these information streams 
in concert to create models that are more than the sum of 
their parts. To this end, we apply random forest prediction 
algorithms to predict plant-frugivore interactions in Atlantic 
forests in Brazil using combinations of species trait data, phy-
logenetic information, and latent structural features.

Material and methods

Trait and interaction data
The full interaction network was published by Bello  et  al. 
(2017), and includes a total of 5226 unique species 

interactions between 787 plant species and 342 frugivore spe-
cies. This network effectively represents a regional metaweb 
of observed interactions, with the realized set of interac-
tions at a given site being a subset, the exact composition of 
which is determined by local assembly processes. By taking 
a metaweb approach-predicting ‘possible’ interactions inde-
pendent of local geographic or temporal variation in species 
abundance – we aim to better understand the factors associ-
ated with the potential for interaction. This general approach 
is shared by a number of other studies predicting potential 
interactions across large spatial scales. (Strydom et al. 2022, 
Dansereau et al. 2024, Hao et al. 2025) Due to the availabil-
ity of phylogenetic and trait data, we restricted our analyses 
to avian–plant interactions, representing the most species-
rich set of frugivores in this dataset (3856 unique interactions 
between 394 and 242 plant and bird species, respectively). Of 
our avian-frugivore species (hereafter frugivores), the number 
of unique plant interactions per frugivore (frugivore degree) 
ranged from 1 (53 species) to 120 unique plant interactions 
recorded for Turdus rufiventris; median frugivore degree was 
5. The number of unique frugivore interactions per plant 
(plant degree) was generally lower, ranging from 1 (128 spe-
cies) to 80 unique frugivore interactions recorded for Myrsine 
coriacea; median plant degree was 2. Overall this interac-
tion network is characterized by a relatively high degree of 
phylogenetic generalism. Out of 187 frugivore species that 
interacted with more than one plant for which phylogenetic 
information is available, only nine interacted with a group 
of plants more phylogenetically related than random chance 
(Kembel et al. 2010, Supporting information).

The Bello  et  al. (2017) dataset includes a number of 
informative traits for both plant and frugivore nodes that 
could be potentially useful for prediction, many of which 
we used in our trait-based models. These include frugivore 
allometric measures such as body mass and gape size, and 
ecological traits such as degree of frugivory (scored 1–3). 
Frugivore mean body mass was unavailable for three species, 
while mean gape size was unavailable for 68 species. Plant 
traits include fruit diameter, fruit color, growth form, and 
fruit lipid concentration (scored 1–3). For trait-based mod-
els, species were filtered to only include those with complete 
sets of trait data (174/242 frugivore species). As part of our 
research goal was to compare the power of phylogenetic and 
trait data, we chose to omit these species for trait based mod-
els rather than phylogenetically impute missing trait informa-
tion. Categorical variables (such as plant growth form) were 
transformed into a series of binary variables through one-hot 
encoding. Continuous data on fruit size was available for 
280/394 plant species; plants without trait data were again 
excluded from trait-based models. Details on plant and frugi-
vore traits used in the analysis are available in Table 1.

Phylogenetic data
For plant species, phylogenetic data was retrieved from 
the BIEN database, accessed using the R package ‘BIEN‘ 
(Maitner et al. 2018). Out of 787 plant species in our data-
set, 646 occurred in the BIEN phylogeny. 61 plant species 
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with a recorded avian frugivore interaction did not occur in 
this phylogeny. For absent species with a congeneric in our 
phylogeny, we added those species as a polytomy at the par-
ent node of that genera, allowing us to add an additional 46 
species to our analysis. 16 species did not have congenerics 
present in the network, and were discarded from the analy-
sis. Results were qualitatively the same if these polytomies 
are omitted from the analysis (Supporting information). Bird 
phylogenies were retrieved from VertLife (Jetz et al. 2012); 
for our analysis, we used 100 trees sampled from the Bayesian 
posterior distribution. Phylogenetic information was unavail-
able for two bird species in our network. As with plants, both 
species were added as polytomies at their respective parent 
genera. Each sampled tree was used in one of one hundred 
replicates for each model incorporating phylogenetic data. 
For both the plant and bird phylogenies we performed eigen-
value decomposition, and trained phylogenetic models on 
the first 4 dominant eigenvectors for plants and the first 3 
dominant eigenvectors for birds. The incorporated eigenvec-
tors explained 37.2% of variation for plants. While the exact 
amount of variation explained by the incorporated eigenvec-
tors differed among sampled trees for birds due to variation 
in posterior samples, on average the incorporated eigenvec-
tors explained 46.02 ± 2.29% of variation for birds.

Latent methods
We used singular value decomposition of each training interac-
tion matrix to create continuous latent features for prediction 
using the svd() function in base R (www.r-project.org). For 
each training iteration, we fixed the dimensions of the train-
ing matrix to be equal to the full network, adding interactions 
(1’s) of only the training set before creating latent features. As 
such, in any individual training matrix, some species with few 
interactions may have no recorded interactions. Latent features 
of training subsets were highly correlated with those derived 
for imputing based on the full interaction matrix (Supporting 
information). We used the first three axes of variation for both 
plants and birds as continuous predictors. For imputation of 
missing links across the entire network, we utilized the entire 
interaction matrix to construct latent features.

Model structure and comparison
We used random forest regression models informed by dif-
ferent feature types to make comparisons across types of 

information, as implemented in the R ‘randomForest’ pack-
age (Liaw and Wiener 2002). Random forest models are 
effectively an ensembled series of classification trees, each of 
which is applied to bootstrapped subsamples of training data 
and a portion of the potential predictor variables. By incor-
porating the information of many decision trees together, 
random forest techniques can often boast high predictive 
accuracy across a variety of ecological settings, the ability to 
uncover complex and nonlinear interactions between predic-
tor variables, and internally cross-validate by repeatedly test-
ing on ‘out of bag samples’ (portions of the data not included 
in a given bootstrap subsample) (Breiman 2001, Cutler et al. 
2007). In the context of ecological networks, random forest 
models have been successfully applied to predict species inter-
actions across a variety of systems (Desjardins-Proulx  et  al. 
2017, Pichler et al. 2020, Sydenham et al. 2022). We tested 
a total of seven models; three using predictors from only one 
type of information (traits, phylogeny or latent features), 
three pairwise combinations of each predictor class, and one 
model incorporating all possible predictors. In order to vali-
date model performance, we trained 100 iterations of each 
model. Like most empirically observed ecological networks, 
our training network was very sparse (Vázquez et al. 2009). 
Our total interaction matrix included 3643 observed inter-
actions and 90  917 unobserved interactions. To address 
this class imbalance, for each iterations we first randomly 
selected 80% of our data for training, and then randomly 
removed unobserved interactions from the edgelist (i.e. 
rows of the edgelist where the interaction value is equal to 
0) from the training data until we achieved a 1:3 ratio of 
observed:unobserved interactions (see the Supporting infor-
mation for the results of alternative prevalence values). After 
model training, performance was evaluated on the remaining 
20% test set. We analyze model performance both through 
area under the receiver–operator curve (AUC), which mea-
sures model discriminatory power, and root mean squared 
error (RMSE), which measures prediction accuracy. These 
two measures are commonly used to evaluate the effectiveness 
of predictive approaches (Norberg et al. 2019), but the choice 
of which metric to optimize may be different depending on 
the use case in question. For each model iteration we also 
recorded the optimal suitability threshold for classification as 
the value that maximized Youden’s J statistic (the sum of spec-
ificity and sensitivity minus one, a common diagnostic statis-
tic for dichotomous tests (Youden 1950)). For comparisons 
of model accuracy metrics across models, we performed post 
hoc two-sided pairwise t-tests adjusted for multiple compari-
sons (Holm 1979).

After validating model predictive performance using this 
test-train split, we then re-ran 100 iterations of each model 
using the full network without internal class balancing. Using 
the full suite of interaction information allows us to better 
predict potential unobserved links. We present the pairwise 
suitability correlations of each of these full model outputs, 
as well as present a list of links predicted to be highly suit-
able by one or more of our models but that are not observed 
to occur in this data set. We then used the average optimal 

Table 1. Frugivore and plant traits used for interaction prediction. 
Non-ordinal factors such as fruit color were transformed through 
one-hot encoding prior to inclusion in the model.

Species Trait Units Range/levels

Frugivore Body size g 6.60–3500
​ Gape size mm 2.80–36.29
​ Degree of frugivory – low, medium, high
Plant Fruit diameter mm 1.2–325
​ Fruit color – yellow, red, black, 

brown, green, other
​ Fruit lipid content – low, medium, high
​ Plant growth form – tree, liana, palm,  

scrub, other
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threshold value for each model as model-specific thresholds 
for classification. For each model, variable importance was 
quantified by the mean decrease in Gini coefficient (MDG) 
after permutation of each variable as implemented in the R 
‘randomForest’ package (Liaw and Wiener 2002). A com-
mon variable importance metric for classification problems, 
MDG is calculated by normalizing the sum of all decreases 
in node purity (the ability of a given tree to correctly distin-
guish links from nonlinks) given permutation by the total 
amount of decision trees in the ensemble (Calle and Urrea 
2011, Khalilia et al. 2011). A higher MDG value for a given 
variable indicates that variable is more important to model 
performance.

Results

Model performance
Using an 80–20 split of testing and training data, all mod-
els were able to predict testing interactions with reasonable 
accuracy and discriminatory power (Fig. 1). AUC was low-
est for trait only models (0.84 ± 0.009) followed by phylog-
eny only models (0.84 ± 0.008). All models including latent 
information outperformed latent-agnostic models in terms 
of discriminatory power, with the greatest AUC achieved 
by trio (0.91 ± 0.007) and phylogeny-latent models (0.91 
± 0.006); pairwise t-tests indicated no significant difference 
between them (p = 0.14). However, prediction accuracy did 
not follow the same trends as discriminatory power. Latent 

and phylogeny-only models had the lowest overall accuracy 
(57.7 ± 0.40 and 56.1 ± 0.44, respectively), while the most 
accurate models were those combining trait information with 
another information type. The trait-phylogeny (RMSE: 49.3 
± 0.42) and trio (RMSE: 49.4 ± 0.44) models were the most 
accurate (pairwise t-tests indicating no difference, p = 0.8), 
closely followed by the traits-latent model (RMSE: 49.8 ± 
0.37). The trait-only model had only middling accuracy per-
formance however (RMSE: 52.7 ±0.54).

Variable importance on entire network
After validating model performance on novel test-data, we 
then retrain replicate models of each type on the full network 
in order to generate more robust predictions. Variable impor-
tance was quantified by mean decrease in Gini coefficient 
after permutation of each variable. In all models incorpo-
rating them, latent SVD features were unilaterally the most 
important variables for prediction (Fig. 2); all models com-
bining latent features with other data sources ranked plant 
SVD axis 1 followed by frugivore SVD axis 1 as the two most 
important variables, with some variation as the ordering of 
the rest of the SVD axis importance. The latent-only model 
generally followed similar patterns of variable importance as 
composite models, though frugivore SVD axis 1 had higher 
importance than the corresponding plant SVD axis. For the 
trio model, frugivore mass and fruit diameter were the next 
most important traits, which was consistent with the order-
ing of all other trait models. While the next most impor-
tant trait was frugivore gape size for the trio model, for other 

Figure 1. Summary performance metrics of all seven models, as measured by area under the receiver operating characteristic curve (AUC) 
and root mean square error (RMSE); highest performing models for each metric are outlined in dashed (AUC) or dotted lines (RMSE). 
Mean metric values are presented from 100 replicates of each model structure alongside standard deviation. Model discriminatory power 
between links and non-links is maximized by including latent structural features, with the inclusion of trait, phylogenetic information, or 
both actually slightly decreasing discriminatory power. However, inclusion of trait and phylogenetic information, while not improving 
AUC, does increase overall model accuracy as measured by mean root squared error. Pairwise t-test adjusted for multiple comparisons 
showed no significant difference between the discriminatory power of the highest performing models (Trio, PhyLatent, p = 0.13), or 
between the RMSE of the two highest accuracy models (Trio, PhyTraits p = 0.8).
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models incorporating trait information fruit length was the 
next most important trait.

In general, we found that continuous frugivore traits 
(body mass, gape width) were more informative to prediction 
than continuous plant traits. Similarly, phylogenetic infor-
mation about frugivores was generally more important for 
prediction than phylogenetic information for plants. In the 
phylogenetic-only model, all three frugivore phylogenetic 
eigenvectors were more important than all plant eigenvec-
tors, while for the trio model only plant eigenvalue axis 2 
was more important than frugivore eigenvalue axis 2. Out 
of the remaining traits, the trio model was most informed 
by frugivory level, with the remaining categorical plant traits 
impacting Gini coefficient very little for all models.

Comparing models
Across the entire network, suitability values between all 
models were highly correlated (Fig. 3); most models were 
able to correctly discriminate between observed and unob-
served links. While the ability to reconstitute observed links 
is important for model performance, focusing on model 
agreement on the suitability of unobserved interactions can 
provide insight into which models may identify different 
potential interactions that are yet unobserved but may occur 
given the appropriate ecological context. Across all poten-
tial links, Spearman’s rank correlation of predicted suitabil-
ity values showed low correlation between phylogenetic and 
trait models (ρ = 0.643), despite both exhibiting very similar 
overall performance. Phylogenetic and latent models showed 
the lowest agreement in suitability predictions of all pairwise 

combinations of models, with ρ = 0.566 when compar-
ing across all links, which then dropped to ρ = 0.032 when 
only looking at unobserved links. This marked drop suggests 
that most of the agreement in suitability rankings between 
these models was in known interactions. The low agreement 
between the ranking of potential interactions poses a bar-
rier to meaningfully target potential sampling based on the 
results of these two models used independently, highlighting 
the importance of composite models that synthesize multiple 
information types to create predictions.

Similarly, suitability predictions of composite and indi-
vidual component models tended to mirror relative infor-
mation type importance. For example, suitability values 
from the trait-latent model were more tightly correlated 
with those from the latent model (ρ = 0.882) than the trait 
model (ρ = 0.773). Table 2 presents the confusion matrix for 
all models after classifying points according to each mod-
els’ average optimal threshold value across all training itera-
tions. We see that at their optimal threshold value, all models 
exhibit markedly low false-negative rates with the exception 
of the trait only model, which exhibited a false-negative rate 
of 4.80%.

Discussion

Models incorporating latent structural features consistently 
outperformed models that excluded them in terms of dis-
criminatory power, but had generally lower accuracy. In con-
trast, trait based and phylogenetic models displayed lower 

Figure 2. Variable importance across all models as measure by Gini importance score; color scheme is consistent with Fig. 1. In all models 
that include them, latent traits were consistently the most important variables for prediction. These were followed by continuous frugivore 
traits (body mass, gape size), and frugivore phylogenetic axes. Plant phylogenies and continuous trait information were generally less impor-
tant for prediction than frugivore traits. Categorical plant traits (lipid content, fruit color, growth form) were the least important variables 
for prediction.
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AUC values, but a better RMSE. Overall performance of 
phylogenetic and trait-only models were remarkably similar 
in terms of both performance measures used. Incorporating 
latent features into each model once again yielded nearly 
identical discriminatory capacity, but an overall slightly 
higher accuracy for the trait-latent features model compared 
to the phylogeny-latent feature model. The discriminatory 
power of each individual model generally reflects the relative 
importance of variable information types (Fig. 2).

The strength of latent features for predicting interactions 
may lie in their particular suitability for relatively generalist 
interaction networks. Frugivorous vertebrates, for instance, 
often exhibit high levels of generalism in their interactions 
(Richardson  et  al. 2000), often more-so than their plant-
partners (Salazar-Rivera et al. 2020). In systems characterized 
by low interaction specificity, latent features may be especially 
effective at capturing the neutral processes that underlie com-
munity assembly. Abundant, wide-ranging, or highly gen-
eralist species may drive a ‘rich get richer’ dynamic, where 
hyper-generalists that already interact with multiple species 

are more likely to accumulate additional partners. This pat-
tern is reflected in our results: the 20 links with the highest 
predicted suitability from our trio model were spread across 
16 bird species, many of which already participated in a large 
number of observed interactions. While the median num-
ber of interactions per bird in the dataset was 5, the median 
degree for these 16 species was 56. The top predicted missing 
link connected the azure-shouldered tanager Thraupis cyanop-
tera and Myrsine umbellata, two relatively common species 
that have indeed been documented as interacting in other 
datasets (Silva et al. 2002, Fricke and Svenning 2020). Host 
abundance, in particular, has been identified as a key driver 
of interaction probability in other Neotropical frugivory net-
works (Laurindo et al. 2020). Overall, latent features derived 
from network dimensionality reduction or motif completion 
may be especially powerful tools in the context of generalist 
interaction networks.

While comparing models in terms of discriminatory 
power highlights the importance of latent features, incor-
porating phylogenetic or trait information alongside latent 

Figure 3. Pairwise Spearman’s rank correlations of link suitabilities across models for all potential interaction (A), as well as only unobserved 
interactions (B). The latter set of links represents both true forbidden links, as well as other potential interactions not observed in our 
dataset.

Table 2. True and false positive and negative rates for models trained on the entire interaction network, classified assuming the average 
threshold value across all training interactions that maximized Youden’s J statistic. Percentages represent proportions in each category out of 
all total links each model predicted; the absolute count of each category is represented in parenthesis. Total number of predicted links dif-
fered across models according to availability of covariant data.

Model True positives False positives True negatives False negatives

Latent 3.85% (3643) 0.28% (263) 95.87% (90  654) 0.00% (0)
Phy 3.87% (3350) 0.27% (231) 95.66% (82  806) 0.29% (175)
Traits 1.86 % (778) 0.22% (92) 93.20% (39  021) 4.73% (1979)
PhyLatent 4.07% (3525) 0.124% (107) 95.80% (82  930) 0.00% (0)
PhyTraits 6.63% (2723) 0.35% (143) 93.02% (38  212) 0.01% (2)
TraitsLatent 6.59% (2757) 0.44% (185) 92.97% (38  928) 0.00% (0)
Trio 6.863% (2725) 0.15% (61) 93.22% (38  294) 0.00% (0)

 16000706, 0, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1002/oik.11156 by U

niversity O
f South C

arolina, W
iley O

nline L
ibrary on [03/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 8 of 11

features actually improves model accuracy measures (RMSE), 
despite slightly reducing discriminatory power. The question 
whether it is better to optimize one metric or the other, is 
largely dependent on the particular use case. As we’ve pre-
sented the problem of link prediction, primarily as a way to 
guide sampling efforts to more efficiently measure networks 
given limited resources, discriminatory power is likely a more 
apt metric. Beyond ranking different links, the relative con-
fidence in each link is of less concern as the most likely links 
will be validated with additional observation data. However, 
if the aim was something closer to filling in a partially sam-
pled network and then analyzing its properties, a metric like 
RMSE or H-measure (Hand 2009) may be more appropri-
ate as it better allows you to directly incorporate uncertainty 
about particular linkages into your resultant analyses.

In models incorporating frugivore and plant phylogenetic 
information, the frugivore phylogeny tended to be more 
important to model performance. Ideally, this is likely because 
patterns of interactions are more phylogenetically conserved 
between frugivores than plants. On average, frugivores tend 
to interact with a more phylogenetically conserved group of 
plants than vice versa, with a given plant’s fruit being con-
sumed with a more phylogenetically dispersed set of avian 
taxa. Some of this phenomenon may be due to the frugivore 
phylogeny being more fully summarized by a smaller number 
of eigenvectors. On average, the first three eigenvectors of the 
decomposed frugivore phylogeny explained 46.02% of total 
variation across the phylogeny on average, while the first four 
eigenvectors only explained 37.5% of variation for plants. 
The difference in variation and resultant effects on prediction 
may be due to overall structural features of the phylogeny, 
or differences in the total phylogenetic divergence character-
ized by the tree. Frugivory is a strategy that spans the avian 
tree, occurring in a diverse set of taxonomic orders (Daniel 
Kissling et al. 2009), though this dataset reflects a relatively 
narrower set of frugivorous taxa. Out of our 242 avian spe-
cies investigated in this study, the majority belonged to the 
orders Passeriformes, Piciformes and Columbiformes, compris-
ing 193, 18 and 10 species, respectively. Ornithochory is also 
widely distributed across plant taxa in this system, a pattern 
reflected in other tropical systems (Kuhlmann and Ribeiro 
2016, Pizo et al. 2021).

Our modeling approach represents a useful framework for 
predicting species interactions in a variety of systems, but care 
must be taken when interpreting the results in the particular 
context of each system.

While we ultimately find that latent features dominate 
prediction in our system, the potential for information leak-
age between test and train sets means we must be conserva-
tive in our interpretation of comparisons across models. Due 
to the nature of matrix decomposition approaches, there is 
no clear way to utilize either latent or phylogenetic features 
to predict out of bounds. Even when creating latent features 
from training subsets of interaction data, the dimensions of 
the training matrix must be fixed to the size of the full net-
work in order to generate predictions for all species within 
the network. As such, while useful for imputing potentially 

missing interactions between known species, latent features 
are unsuitable for predicting interactions of species that are 
not already represented within the existing species pool. The 
dominance of latent features using internal cross-validation 
metrics support their importance in our system. However, 
as latent features are derived from portions of or all of the 
observed interaction network, their predictive capacity 
may be sensitive to network characteristics such as network 
size, connectance, and the proportion of links that are still 
unsampled (Supporting information). Additional work is 
needed to fully explore these relationships in order to explore 
in which contexts latent features might be more or less use-
ful for prediction. Despite their caveats, latent features have 
already been successfully implemented to predict links in a 
variety of ecological network types, and can provide signifi-
cant improvements in predictive performance in a variety 
of ecological (Poisot et al. 2021, 2023, Banville et al. 2023, 
Nunes Martinez and Mistretta Pires 2024) and non-ecolog-
ical (Yeung et  al. 2002, Wu et  al. 2019, Zeng et  al. 2020) 
contexts.

Future work investigating the utility of latent features to 
predict frugivorous interactions in a variety of empirical sys-
tems and the mechanisms through which they act represents 
an important avenue for future research. While there are cur-
rently no clear methods through which we can apply these 
methods for out-of-sample prediction, these methods are 
promising ways to target potentially missing links in existing 
networks. Similarly, our presented interpretation of the effi-
cacy of phylogenetic information for predicting missing links 
assumes that phylogenetic relatedness reflects conserved traits 
or shared evolutionary histories that govern interactions. 
However, while phylogenetic relationships do impact at least 
some of the species traits governing interactions, there may 
be other confounding information (such as a phylogenetic 
biases in research effort) within phylogenetic information as 
well. While not reducing overall link prediction performance, 
this does mean we should once again take a more conserva-
tive interpretation of our prediction results when comparing 
across models, as is the case with any correlative approach.

Link prediction is a promising method to deal with the 
realities of incompletely sampled natural systems, and may 
play an increasingly important role in helping to gain insight 
into how interactions networks may change over time. 
Anthropogenic effects on climate, landcover, and biodiversity 
all have the potential to fundamentally alter mutualistic net-
works, whether through changing mutualistic assemblages 
themselves, or the probability of interactions within a net-
work (Memmott  et  al. 2007, Tylianakis and Morris 2017, 
Teixido  et  al. 2022). Positive feedbacks within mutualistic 
communities may often make them more likely to exhibit 
alternative stable states, and changes in mutualistic com-
munities may result in drastic changes to network structure 
and resulting assemblages (Lever et al. 2014, Bascompte and 
Scheffer 2023). Link prediction methods provide an oppor-
tunity for us to better understand which species are interact-
ing now, and which may interact in the future. Prediction 
approaches can also be useful when predicting the potential 
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effects of invaders on mutualistic network structure (Traveset 
and Richardson 2014, Fricke and Svenning 2020). However, 
at its core, predicting which interactions are unsampled but 
present in a given ecological context is related to but dis-
tinct from the task of predicting how interactions may shift 
in response to changing biotic or abiotic conditions. If the 
eco-evolutionary processes governing the formation of novel 
interactions over short timescales are sufficiently different 
from those governing the maintenance and structure of long-
standing interactions across a community, then different 
modeling approaches may vary in their effectiveness at pre-
dicting missing links versus truly novel ones. To fully under-
stand and predict the scope of mutualistic network change, 
future work applying predictive approaches to temporally 
sampled mutualistic networks is necessary. Understanding 
the spatial and temporal scales at which mutualistic interac-
tions turn over or change strength, and how we can utilize 
predictive approaches to forecast these changes is a vital next 
step for understanding the dynamics of mutualistic networks 
in a changing world.
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