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Abstract

The large spatial scale, geographical overlap, and similarities in transmission mode between the 1918 H1N1 influenza and 2020
SARS-CoV-2 pandemics together provide a novel opportunity to investigate relationships between transmission of two differ-
ent diseases in the same location. To this end, we use initial exponential growth rates in a Bayesian hierarchical framework
to estimate the basic reproductive number, R0, of both disease outbreaks in a common set of 43 cities in the United States. By
leveraging multiple epidemic time series across a large spatial area, we are able to better characterize the variation in R0 across
the United States. Additionally, we provide one of the first city-level comparisons of R0 between these two pandemics and ex-
plore how demography and outbreak timing are related to R0. Despite similarities in transmission modes and a common set
of locations, R0 estimates for COVID-19 were uncorrelated with estimates of pandemic influenza R0 in the same cities. Also,
the relationships between R0 and key population or epidemic traits differed between diseases. For example, epidemics that
started later tended to be less severe for COVID-19, while influenza epidemics exhibited an opposite pattern. Our results suggest
that despite similarities between diseases, epidemics starting in the same location may differ markedly in their initial progression.
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Significance Statement

We often assume knowledge about historical epidemics can help establish reasonable expectations regarding the magnitude and
spread of outbreaks of novel diseases with similar characteristics. However, the rarity of novel epidemics that span large spatial
scales has made this assumption difficult to evaluate empirically, especially in the context of a global pandemic. Our study tests
this assumption by comparing the initial outbreak dynamics of the 1918 H1N1 influenza and 2020 SARS-CoV-2 pandemics occurring
in the same set of United States cities by quantifying R0, the reproductive rate of disease spread, for each city. Our results highlight
how epidemic progression in a given location may differ markedly across diseases despite similarities in transmission mode.

Introduction
No two epidemics are the same; stochastic effects can cause
two epidemic trajectories to diverge even under otherwise iden-
tical circumstances, and variation in both pathogen traits and
population-level factors can further affect epidemic outcomes.
Understanding sources of variability and how they may affect key
disease parameters is of paramount importance early in an out-
break. Chief among these key disease parameters is the basic re-
production number (R0), corresponding to the expected number
of secondary cases generated by a single infected individual in a
wholly susceptible population (1). While the limited spatial scope
of many novel disease outbreaks make characterization of the full
R0 distribution of a given disease difficult, the spatial scale exhib-
ited by the 1918 influenza and 2020 COVID-19 pandemics make

them ideal systems in which to investigate how variation between
epidemics affect the overall R0 distribution. Additionally, their ge-
ographical overlap and similarities in transmission mode allow us
to compare epidemic progression of each disease in the same city,
providing insight into the influence of population-level factors on
the spread of each disease similarly.

R0 itself is not an innate biological character of a pathogen,
but rather conveys information about how a disease is transmit-
ted through a given population. Consequently, R0 is affected by
the traits of both the pathogen and host population (2). While
pathogen traits may control the range of possible R0 values, the
observed R0 may also be influenced by population characteris-
tics (3, 4). Variation in characteristics such as densities, contact
structure, and mobility may all affect the probability of coming
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into contact with infected individuals and lead to interpopula-
tion variability in R0. While understanding this spatiotemporal
variability may better inform control strategies (3), both the spa-
tial and temporal scope of any novel disease outbreaks are of-
ten limited. As the largest two respiratory pandemics of the 20th
and 21st centuries, epidemics of H1N1 influenza and COVID-19
provide an opportunity both to better characterize the variability
of R0 for each disease as well as investigate population charac-
teristics correlated with an individual epidemic’s specific R0. De-
spite being caused by different viral families, the similarity of 1918
pandemic influenza and COVID-19 in transmission mode, global
scope, and nonpharmaceutical interventions (NPIs) used to com-
bat both pandemics have already inspired a number of compara-
tive studies (5–7).

In order to better understand factors that may be correlated
with variation in infection dynamics, we estimate initial R0 for
both 1918 Pandemic influenza and COVID-19 using mortality data
in 43 cities in the United States under a Bayesian hierarchical
framework. By analyzing the first three weeks of mortality of mul-
tiple outbreaks of each disease across the same set of cities, we are
able to both provide a general characterization of each disease’s
associated R0 distributions and make novel comparisons across
diseases. Despite the passing of a century, cities may retain histor-
ical similarities (e.g. patterns of movement, household size distri-
bution), which relate to pathogen transmission factors, suggesting
that transmission patterns from one epidemic may then be pre-
dictive for future epidemics with similar transmission modes. Due
to their global scopes, together the 1918 influenza and COVID-19
pandemics form a dyadic system ideal for evaluating this assump-
tion. We find that—despite occurring in the same locations—there
is a surprising lack of concordance both between R0 estimates for
the 1918 influenza and COVID-19 outbreaks. The diseases also ex-
hibit opposing patterns in the effects of both population size and
epidemic timing on R0.

Results
R0 distributions
In COVID-19 models only incorporating city identity, estimates of
R0 ranged from 1.49 (Spokane, WA, USA) to 2.46 (New York, NY,
USA), with a median value of 1.82 Fig. 1. For influenza, estimates
of R0 ranged from 1.25 (Atlanta, GA, USA) to 1.60 (New Orleans, LA,
USA), with a median value of 1.54. While most estimates of R0 for
COVID-19 clustered about the median, the distribution of R0 for
influenza was slightly bimodal. A likelihood ratio test comparing
whether the R0 distribution was unimodal or bimodal confirmed
that, indeed, R0 for influenza was bimodal (P < 0.05); maximum
likelihood estimation found lower and upper modes of 1.48 and
1.55. In contrast, COVID-19 exhibited an unimodal R0 distribution
(P > 0.05).

Comparing across pandemics
Despite the similarity in transmission mode between the diseases,
median estimates of R0 for the 1918 influenza and COVID-19 are
uncorrelated across cities (r = 0.114, P-value = 0.465) Fig. 1. R0 esti-
mates for COVID-19 epidemics were positively related to city size;
models incorporating the effect of population size on R0 converged
on 80% credible ranging from 0.130 to 0.242 per log-transformed
number of people. In contrast, population size had no relationship
with R0 for influenza; 80% credible intervals for its effect on R0 in-
cluded 0, ranging from −0.049 to 0.059. Log change in population
size between outbreaks was also uncorrelated with both the raw

and standardized differences in median R0 estimates between the
two diseases (P-value = 0.577 and 0.555, respectively).

The effect of outbreak timing
Estimates of R0 for a given city were related to timing of outbreak
emergence for both diseases, but the relationships differed in sign
and strength Fig. 2. For COVID-19, epidemics starting later in the
year tended to progress slower and have a lower R0. Models in-
corporating the fixed effect of outbreak timing converged on 80%
credible intervals corresponding to weekly change in R0 of −0.157
to −0.099. In contrast, influenza exhibited a positive relationship
with epidemic start date; coefficients for the fixed effect of out-
break timing converged on 80% credible intervals spanning 0.049
to 0.121, as new influenza epidemics tended to be more severe
than their predecessors rather than less.

Discussion
Our estimated distributions of R0 generally agree with studies
utilizing other estimation methods, including those utilizing the
same data sets (4, 8). Contrary to expectations, city-specific es-
timates of R0 were not correlated across pandemics, nor were
the differences in those estimates correlated with differences in
population size. R0 estimates across pandemics were also corre-
lated with site and epidemic-specific variables differently. R0 for
COVID-19 was negatively correlated with outbreak timing (later
outbreaks were less severe), while estimates for influenza were
positively correlated with outbreak timing (later outbreaks grew
faster). Population size was also positively correlated with R0 for
COVID-19, while the two were uncorrelated for influenza. Median
R0 estimates of influenza were bimodal, clustering around modes
of 1.48 and 1.55. This bimodality may be due to differences in
city-level epidemic control strategies; Hatchett, Mecher, and Lip-
sitch (2007) found that cities which implemented four or more
NPIs early in their associated epidemic had less than half the peak
weekly death rate than cities which responded later or with less
intervention methods (9). Our higher cluster of R0 estimates may
be comprised of cities who failed to intervene during the initial
stages of epidemic progression, while the lower cluster may rep-
resent cities that took a more aggressive approach to minimizing
spread, though we see no relationship between R0 mode clustering
and the aforementioned NPI threshold (Supplementary Material).

Despite similarities in infection pathology, there were no asso-
ciations between R0 estimates for influenza and COVID-19 for a
given city. This may be due to the fact that key city characteris-
tics change through the century as cities develop, or that traits
may influence transmission of these viruses in weak or different
ways despite their similarities. Through the past century many
American cities have changed in different ways and at different
rates. As the overall US population has increased, the population
size rank order of some cities has remained relatively constant
(e.g. New York, NY, USA), while others have drastically increased
(e.g. Nashville, TN, USA) or decreased (e.g. St. Louis, MO, USA). If
transmission rate is dependent on population size as many com-
partmental models assume (1), then these shifts in relative pop-
ulation size may drive some of the divergence of R0 between out-
breaks. Additionally, changing human behaviors may contribute
to infection pattern differences. While we found no evidence for
the effect of population size on pandemic influenza transmission,
factors such as household composition, intercity travel patterns,
frequency and scale of community gatherings, and popularity of
public transportation could all affect the probability of an infec-
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Fig. 1. R0 estimates for 43 US cities for both pandemics based on early exponential growth rate. Despite occurring in the same location, median R0

estimates were not significantly correlated between pandemics (r = 0.114, P-value = 0.465).
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Fig. 2. Relationship between epidemic timing across cities and median R0 estimate. For COVID-19 (pink), epidemics that occur later tend to be less
severe; 80% credible intervals of the effect of epidemic start date range from −0.157 to −0.099. We see the opposite pattern for pandemic influenza
(blue), for which the most severe epidemics tend to occur later in the year; 80% credible intervals of the effect of epidemic start date range from 0.049
to 0.121. Shaded polygons represent 95% CI of linear model.
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tious contact. With ongoing infrastructure, demographic, and cul-
tural changes in cities, these differences may ultimately impact
epidemic progression as well, causing similar diseases to exhib-
ited markedly different progression.

Alternatively, even if these relationships are conserved, the pro-
gression of pandemic influenza and COVID-19 may simply be in-
fluenced by different factors. While their geographic extents and
transmission modes make comparison of the two diseases natu-
ral, they differ markedly in pathology, morbidity, and infectivity,
and as such may be affected by population-level traits differently.
For example, R0 scales positively with population size for COVID-
19 while the two are not associated for influenza. This could pos-
sibly be due to differences in types of contacts (e.g. duration, prox-
imity) required for each virus to transmit. If the frequency of cer-
tain types of contact scale more or less strongly with density then
we may expect a similarly stronger or weaker effect of population
size for a given virus. Future work focusing on how disease and
population traits interact to influence disease progression may ul-
timately allow us to develop predictions and response strategies
better tailored to individual locations.

Estimated R0 for COVID-19 was negatively related to epidemic
start date, while influenza exhibited the opposite relationship. The
former pattern may be due to the adoption of human responses
to disease outpacing spatial disease spread. For example, adoption
of NPI strategies such as mask-usage and social distancing spread
throughout the United States in response to early COVID-19 out-
breaks may have reduced early transmission in later epidemics.
Alternatively, this reduction could be more to do with mortality
than transmission; a decrease in mortality rate as physicians gain
and share experience in treating the disease could manifest as a
reduction in R0 over the course of a pandemic. Improvements in
disease surveillance may have also lead to earlier diagnosis and
improved survival rates as the epidemic progressed. This pattern
may instead be explained through changes in viral-traits rather
than population ones, perhaps through evolutionary differences
in epidemic strains. The fact that COVID-19 exhibited a negative
relationship between R0 and epidemic timing while influenza did
not may be due to the rate at which the aforementioned pop-
ulation responses were adopted. Advancements in information
technology and pandemic preparedness ideally let us respond to
potential epidemics better and faster, allowing us to slow early
spread.

In contrast, the positive relationship between influenza R0 and
epidemic timing may be due to larger-scale seasonal changes.
Similar to nonpandemic strains of influenza, transmission of pan-
demic influenza may be improved by seasonal environmental fac-
tors affecting viral persistence such as lower temperatures, rela-
tive humidity, and UV exposure (10). This increase in viral persis-
tence could correspond to higher infectiousness, resulting in more
rapid spread in epidemics occurring later in the year. Alternatively
the positive change may be more behavioral; as people begin to
spend more time indoors out of the cold weather, there may be
increased potential for infectious contacts.

As the two largest respiratory pandemics to occur since the
start of the 20th century, making comparisons between the pan-
demic influenza and COVID-19 is a point of interest. By leverag-
ing multiple epidemic time series across a wide geographic ex-
tent we characterize the distribution of R0 of these pandemics in
the United States, providing insight into how variability in popu-
lation characteristics relates to variability in disease transmission
patterns. Despite similar transmission modes, these diseases ex-
hibit contrasting relationships with epidemic timing and popula-
tion size. We intend for these correlative patterns to inspire future

work aimed at elucidating mechanisms by which city-level traits
may influence epidemic dynamic. Further understanding of these
mechanisms may improve our ability to predict and understand
epidemic variability across spatiotemporal scales.

Materials and methods
Estimates of the exponential rate of increase in infections (r) were
calculated using mortality data from the first three weeks since
epidemic onset in 43 US cities using Bayesian hierarchical mod-
els, where epidemic onset is defined as the first day with 10 con-
firmed COVID-19 deaths for SARS-CoV-2 and the start of the first
three consecutive weeks in late 1918 with positive mortality above
baseline for pandemic influenza. These time periods constituted
the initial COVID-19 wave and the second, largest pandemic in-
fluenza wave in the United States, respectively. These estimates
were then converted to R0 (11, 12) assuming infectious period esti-
mates of 5.4 and 2.83 days for SARS-CoV-2 (13) and influenza (14),
respectively. All models included city identity and a fixed inter-
cept; when included, population size and epidemic start date were
incorporated as fixed effects. Model fitting was performed using
Markov Chain Monte-Carlo (MCMC) methods as implemented in
JAGS (15) without chain thinning (16). For detailed methods, see
Supplementary Material.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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