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Optimising predictive models to prioritise viral discovery in 
zoonotic reservoirs
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Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and 
monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, 
but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, 
and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of 
betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of 
probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host–virus 
associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and 
bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts 
of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that 
ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently 
performed approximately as well or worse than expected at random. These findings illustrate the importance of 
ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in 
predictive models. Our revised models showed an improved performance compared with the initial ensemble, and 
predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through 
systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses 
and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection, 
validation, and updating.

Introduction
Identifying the probable reservoirs of zoonotic pathogens 
is challenging.1 Sampling wildlife for the presence of 
an active or previous infection (ie, by testing for 
seropositivity) represents the first stage of a pipeline for 
the proper inference of a host species,2 but sampling is 
often limited on a phylogenetic, temporal, and spatial 
scale by logistical constraints.3 Given such restrictions, 
statistical models can play a crucial role by helping 
to identify which pathogen surveillance targets are a 
priority, by narrowing the set of plausible sampling 
targets by either ruling out clades of low-likelihood 
hosts4,5 or predicting clades at a high risk of being 
hosts.6 For example, machine learning approaches have 
generated candidate lists of probable, but unsampled, 
primate reservoirs of Zika virus, bat reservoirs of 
filoviruses, and avian reservoirs of Borrelia burgdorferi.7–9

At the same time, host predictions are rarely validated 
empirically.10 Occasional case studies suggest both 
success and failures. For example, models predicted 
Eonycteris spelaea as an undetected bat host of filoviruses,7 
which was later confirmed by field sampling in southeast 
Asia.11,12 Similarly, models of mosquito–Zika virus 
interactions predicted Culex quinquefasciatus as a probable 
vector,13 which was rapidly validated by experimental 
competence trials.14,15 A 2019 model of Nipah virus in 
India also predicted several bat species as undetected 
hosts.2 However, experimental infection of the predicted 
Rousettus aegyptiacus showed that this species could 
not support virus replication.16 Further, Nipah virus 
was found circulating in Pipistrellus pipistrellus in 2021, a 
species with a low predicted probability of being a host.17 

More generally, predictions from most models are either 
untested or opportunistically validated, allowing for little 
insight into which approaches have greatest predictive 
accuracy. Systematically validating predictions would 
provide crucial insight into the broader usefulness (or 
inefficacy) of different models in zoonosis research. 
Moreover, these modelling approaches are generally 
developed in isolation; the implementation of multiple 
modelling approaches collaboratively and simultaneously, 
as part of a model-to-validation workflow, could reduce 
redundancy and apparent disagreement at the earliest 
stages of pathogen tracing at the same time as advancing 
predictive analytics by addressing inter-model reliability.

Coronaviruses are an ideal family of viruses with which 
to compare and validate predictive models of probable 
zoonotic reservoirs. Coronaviruses are positive-sense, 
single-stranded RNA viruses that have been detected in 
both mammals and birds.18 They have a broad host range, 
a high mutation rate, and the largest genomes of any 
RNA virus; but they have also evolved mechanisms for 
RNA proofreading and repair to mitigate the deleterious 
effects of a high recombination rate acting over a large 
genome.19 Consequently, coronaviruses fit the profile of 
viruses with a high potential for being a zoonotic 
disease. There are eight human coronaviruses (three in 
the genera alphacoronavirus and five in the genera 
betacoronavirus), of which three are highly pathogenic in 
humans: SARS-CoV, MERS-CoV, and SARS-CoV-2. 
These viruses are zoonotic and widely agreed to have 
evolutionary origins in bats.20–23

The challenges caused by both SARS-CoV and MERS-
CoV illustrate the difficulty of tracing the specific animal 
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hosts of emerging viruses. During the 2002–03 severe 
acute respiratory syndrome (SARS) epidemic, SARS-CoV 
was traced to the masked palm civet (Paguma larvata),24 but 
the ultimate origin was unknown for several years. 
Horseshoe bats (family Rhinolophidae, genus Rhinolophus) 
were implicated as reservoir hosts in 2005, but their SARS-
like coronaviruses were not identical to circulating human 
strains.21 Stronger data from 2017 placed the most 
likely evolutionary origin of SARS-CoV in Rhinolophus 
ferrumequinum or Rhinolophus sinicus.25 There is even less 
certainty about the origins of MERS-CoV, although 
spillover to humans often occurs through contact with 
dromedary camels (Camelus dromedarius). A virus with 
100% nucleotide identity in an approximately 200 base pair 
region of the MERS-CoV polymerase gene was detected in 
Taphozous perforatus (family Emballonuridae) in Saudi 
Arabia;26 however, based on spike gene similarity, other 
sources treat the HKU4 virus from Tylonycteris pachypus 
(family Vespertilionidae) in China as the most closely 
related bat virus to MERS-CoV.27,28 Several bat coronaviruses 
have shown close phylogenetic relationships with MERS-
CoV, with a surprisingly broad geographical distribution 
from Mexico to China.29–32

COVID-19 is caused by SARS-CoV-2, a novel virus with 
presumed evolutionary origins in bats. Although the 
earliest cases were linked to a wildlife market,23 contact 
tracing was low, and there has been no definitive 
identification of the wildlife contact that resulted in the 
spillover nor a true so-called index case. The divergence 
time between SARS-CoV-2 and two of the closest related 
bat viruses (RaTG13 from Rhinolophus affinis and 
RmYN02 from Rhinolophus malayanus) has been 
estimated to be 40–50 years,33 suggesting that the main 
host(s) involved in the spillover are unknown. A viral 
recombination in pangolins has been suggested but is 
unconfirmed.33 In 2020, SARS-like betacoronaviruses 
were isolated from Sunda pangolins (Manis javanica) 
traded in wildlife markets,34,35 and these viruses have a 
high amino acid identity to SARS-CoV-2, but only show 
an approximately 90% similarity in nucleotide identity 
with SARS-CoV-2 or bat coronavirus RaTG13.36 None of 
these host species are universally accepted as the origin 
of SARS-CoV-2 nor are any of the viruses a clear 
SARS-CoV-2 progenitor, and a better fit wildlife reservoir 
could still be identified. However, substantial gaps in 
betacoronavirus sampling across wildlife reduce how 
much actionable inference can be made about plausible 
reservoir hosts and bridge hosts for SARS-CoV-2.37

Building a predictive ensemble
Here, we use betacoronaviruses in bats as a case study 
for the data-driven process of comparing and validating 
predictive models of probable reservoir hosts, with the 
aim of helping to identify which targets to prioritise for 
surveillance for known and future zoonotic viruses. We 
focused on betacoronaviruses rather than SARS-like 
coronaviruses (subgenus Sarbecovirus) specifically, 

because SARS-like coronaviruses are only characterised 
from a small number of bat species in publicly available 
data. This sparsity makes current modelling methods 
poorly suited to more precisely infer potential reservoir 
hosts of Sarbecoviruses specifically. Instead, we used 
predictive models to firstly identify bats (and other 
mammals) that might broadly host any betacoronavirus, 
and secondly to identify species with a high viral sharing 
probability with the two Rhinolophus species carrying the 
earliest known close viral relatives of SARS-CoV-2. In 
mid-2020, in the early stages of the COVID-19 pandemic, 
we developed a standardised dataset of mammal–virus 
associations by integrating a previously published edge 
list38 with a targeted scrape of all GenBank accessions 
for Coronaviridae and their associated hosts. Our final 
dataset spanned 710 host species and 359 virus genera, 
including 107 mammal hosts of betacoronaviruses as 
well as hundreds of other (non-coronavirus) association 
records. We integrated our host–virus data with a 
mammal phylogenetic supertree39 and more than 
60 standardised ecological traits of bat species.7,40,41

We then used these data to generate an ensemble 
of predictive models and drew on two popular 
approaches, network-based and trait-based approaches, 
as well as a hybrid approach, to identify the candidate bat 
reservoir hosts of betacoronaviruses (table). Network-
based methods estimate a full set of true unobserved 
host–virus interactions on the basis of a recorded 
network of associations (here, pairs of host species and 
associated viral genera). These methods are increasingly 
popular to identify latent processes structuring ecological 
networks,42–44 but they are often confounded by sampling 
bias and often can only make predictions for species 
within the observed network (ie, those that have available 
virus data; in-sample prediction). In contrast, trait-based 
methods use observed relationships concerning host 
traits to identify species that fit the morphological, 
ecological, or phylogenetic profile of known host species 
of a given pathogen, and rank the suitability of unknown 
hosts on the basis of these trait characteristics.8,45 
These methods might be more likely to recapitulate 
patterns in observed host–pathogen association data 
(eg, geographical biases in sampling and phylogenetic 
similarity in host morphology), but they more easily 
correct for sampling bias and can predict host species 
without known viral associations (ie, out-of-sample 
prediction).

In total, we implemented eight different predictive 
models of host–virus associations, including four network-
based approaches, three trait-based approaches, and one 
hybrid approach using trait and phylogenetic information 
to make network predictions. These efforts generated eight 
ranked lists of suspected bat hosts of betacoronaviruses. 
Each ranked list was then scaled proportionally and 
consolidated in an ensemble of recommendations for 
betacoronavirus sampling and broader ecological–
evolutionary research. Next, approximately 1 year after our 
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initial model ensemble, we reran our entire analytical 
pipeline with new bat betacoronavirus detections, taking 
advantage of the new proliferation of published research 
on bat coronaviruses. This process provided an 
unprecedented opportunity to rapidly compare model 
performance, provide up-to-date predictions of probable 
but unsampled bat hosts, and assess model accuracy in the 
context of ongoing sampling for bat coronaviruses.

Predicted bat reservoirs of betacoronaviruses
Our initial ensemble found a wide variation in model 
performance; individual models explained 0–69% of 
the variance in betacoronavirus positivity (with a mean of 
25%), whereas the ensemble generally had improved 
predictive capacity (R²=42%; appendix p 22). The 
predictions of bat betacoronavirus hosts derived from 
network-based and trait-based modelling approaches 
displayed strong inter-model agreement within each 
group but largely differed between groups (as measured 
by pairwise Spearman’s rank correlations among 
predicted ranks; figure 1). Of the 1037 included bat species 
not known to be infected by betacoronaviruses during our 
initial analysis in 2020 (against 79 bat species known 
to be infected), our models identified between 7 and 
723 potential hosts on the basis of a 10% omission 
threshold (90% sensitivity). Applying this same threshold 
to our ensemble predictions, our initial models identified 
371 bat species as probable undetected hosts. Notably, 
only 48 suspect hosts were identified in sample, whereas 
we identified 323 suspect hosts out of sample, 
highlighting that most undiscovered hosts—and, in turn, 
undiscovered betacoronaviruses—should be in 
unsampled bat species.

This multi-model ensemble predicted undiscovered 
betacoronavirus bat hosts with notable geographical 
and taxonomic patterning (figure 2). In-sample predicted 

hosts were globally distributed and recapitulated 
geographical patterns of known bat betacoronavirus hosts 
in Europe, the Neotropics, and southeast Asia; however, 
our models also predicted a high richness of probable bat 
reservoirs in North America. Applying a graph partitioning 
algorithm (phylogenetic factorisation) to the bat phylo
geny,46 we similarly found that both betacoronavirus 
positivity and in-sample predictions were, on average, 
lowest for the superfamilies Noctilionoidea and Vespe
rtilionoidea in the suborder Yangochiroptera. This finding 
makes intuitive sense, because these taxa do not include 
the groups known to harbour most of the betacoronaviruses 
detected in bats (eg, Rhinolophus and Hipposideridae). In 
contrast, our out-of-sample predicted hosts were more 
notably clustered in much of sub-Saharan Africa and 

Prediction on hosts without 
known associations (out of 
sample)

Predictive extent and use of pseudoabsences

Network 1: k-nearest neighbours No Only predicts link probabilities among species in the association data

Network 2: linear filter No Only predicts link probabilities among species in the association data

Network 3: plug and play No Uses pseudoabsences to predict over all mammals in association data, using 
latent approach

Network 4: scaled phylogeny No Only predicts link probabilities among species in the association data

Trait 1: boosted regression trees Yes Uses pseudoabsences for all bats in trait data to predict over all species, 
including those without known associations

Trait 2: Bayesian additive regression trees Yes Uses pseudoabsences for all bats in trait data to predict over all species, 
including those without known associations

Trait 3: neutral phylogeographic Yes Trains on a broader network, and predicts sharing probabilities among any 
mammals in phylogeny and International Union for Conservation of Nature 
range map data

Hybrid 1: two-step kernel ridge regression Yes Uses pseudoabsences for all bats in trait data to predict over all species, 
including those without known associations

Some methods use pseudoabsences to expand the scale of prediction but still only analyse existing host–virus data, with no out-of-sample inference, whereas other methods 
can predict onto new data.

Table: Scope and calibration of different predictive modelling approaches

Figure 1: Agreement across an ensemble of predictive modelling approaches
Agreement across models identifying hosts with available virus data (in sample) (A) and without known viral 
associations (out of sample) (B). The pairwise Spearman’s rank correlations between models’ ranked species-level 
predictions were generally substantial and positive. Models were arranged in decreasing order of their mean correlation 
with other models. Models that used trait data made more similar predictions to each other than approaches using 
network methods with the same data. Network-based models that used some ecological data made more similar 
predictions than all other models (eg, network 4, which uses phylogeny, and hybrid 1, which uses both phylogeny and 
trait data). All models that could make out-of-sample predictions used trait data and showed strong agreement.
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southeast Asia (eg, Vietnam, Myanmar, and southern 
China), with no representation in the western hemisphere. 
Likewise, out-of-sample predictions were lower in 
Neotropical bat families (eg, Noctilionidae, Mormoopidae, 
and Phyllostomidae), most emballonurids, and primarily 
Neotropical molossids; whereas the Rhinolophus genus 
and most of the Old World subfamily Pteropodinae were 
predicted to be more likely to host betacoronaviruses 
(appendix p 18).

Because only trait-based models were capable of out-of-
sample prediction, the differences in geographical and 
taxonomic patterns of our predictions probably reflect 
distinctions between the network-based and trait-based 
modelling approaches. We suggest that these should be 
considered as qualitatively different lines of evidence. 
Network approaches proportionally upweight species with 
a high observed viral diversity, recapitulating sampling 
biases largely unrelated to coronaviruses (eg, frequent 
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Figure 2: Initial ensemble predictions of the geographical and evolutionary distribution of known and predicted bat hosts of betacoronaviruses
Known hosts of betacoronaviruses (A,B) are found worldwide, but particularly in southern Asia and southern Europe. Taxonomically, betacoronaviruses are less 
common in two superfamilies of the suborder Yangochiroptera, Noctilionoidea, and Vespertilionoidea (clade 1). The predicted in-sample bat hosts (ie, those 
with any viral association records; C,D) tend to recapitulate observed geographical patterns of known hosts but with a higher concentration in the Neotropics. 
Similarly, taxonomic patterns reflect those of known betacoronavirus hosts. In contrast, the out-of-sample bat host predictions based on phylogeny and ecological 
traits (E,F) are mostly clustered in Myanmar, Vietnam, and southern China, with none in the Neotropics, and North America. Predicted hosts are likewise more 
common in the Rhinolophidae (clade 2) and subfamilies of Old World bats (clade 5) and are rare in many Neotropical taxa (clades 1 and 7) and emballanurids 
(clades 3 and 4). In the phylogenies, bar height indicates betacoronavirus positivity (B) or predicted rank (D,F; higher values indicate lower proportional ranks). 
Colours indicate likelihood of clades to contain hosts identified through phylogenetic factorisation (red indicates clades more likely to contain hosts, blue indicates 
less likely hosts; appendix).
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screening for rabies lyssaviruses in the common vampire 
bat Desmodus rotundus, which has been sampled only a few 
times for coronaviruses31,47–49). Highly ranked species might 
also have been previously sampled without evidence of a 
betacoronavirus presence; for example, Rhinolophus luctus 
from China and Macroglossus sobrinus from Thailand tested 
negative for betacoronaviruses, but the detection probability 
was limited by small sample sizes.50–52 In contrast, trait-
based approaches are constrained by their reliance on 
phylogeny, ecological traits, and geographical covariates, all 
of which made the models more likely to recapitulate 
existing spatial (ie, clustering in southeast Asia) and 
taxonomic (ie, the Rhinolophus genus) patterns. However, 
out-of-sample predictions are, by definition, inclusive of 
unsampled bat hosts,53 which potentially offer a greater 
return on viral discovery investment.

Model validation
After this initial 2020 model ensemble, we used 
broad literature searches to systematically track 
betacoronavirus-positive bat species that were missed in 
our initial data compilation (eg, coronavirus sequences 
that were not annotated to genus on GenBank).52,54 These 
searches also tracked the exponential increase in data on 
bat coronaviruses stemming from the emergence of 
SARS-CoV-2 that were published after our first model 
ensemble. This informal non-systematic Review used a 
combination of a Web of Science and PubMed searches 
(on Sept 24, 2020) and an ongoing Google Scholar search 
to update these results (from May 24, 2020, to 
Sept 30, 2021), including papers in English, with 
keywords such as “bat” and “betacoronavirus”; all 
specific search terms and species identified are given in 
the appendix (p 14). A year after our initial data 
compilation (in June, 2021), we also reran our initial 
scrape of GenBank to identify new betacoronavirus-
positive bats, limiting our search to matches to 
betacoronavirus (taxid: 694002) and the order Chiroptera 
(taxid: 9397); however, this did not recover any additional 
host species positive for betacoronavirus not already 
recorded as positives in our updated data. We also mined 
publicly available metagenomic and transcriptomic 
datasets for evidence of a betacoronavirus infection.55–57 
However, no published libraries contained evidence of 
betacoronaviruses (appendix p 15). Lastly, we analysed 
the wildlife testing data from the US Agency for 
International Development Emerging Pandemic Threats 
PREDICT programme, collected from 2009 to 2019, 
which was publicly released in June, 2021, and includes 
many betacoronaviruses that were discovered during the 
programme’s run but have only published and identified 
down to the genus level in the full release.

In total, we uncovered 47 novel bat hosts of beta
coronaviruses that were either absent from our original 
dataset or newly discovered after our initial analyses. 
This data update resulted in a total of 126 known bat 
species that host betacoronaviruses, and we continue to 

collate these records in a public online database. Of these 
47 new hosts, the original ensemble correctly predicted 
only 36 (77% success rate), but some sub-models 
performed significantly better than others; for instance, 
three models (trait 3, network 1, and network 4) all 
correctly identified 100% of novel hosts in their predictive 
sample. The high performance of all these models, and 
their high performance on the training data 
(appendix p 22), suggest that both approaches contributed 
usefully to the initial ensemble.

The 47 newly discovered hosts also enabled us to develop 
a new kind of performance metric for machine learning 
tasks with presence-only validation data (ie, new positives 
can be collected, whereas negatives are substantially more 
difficult to prove). If a model makes predictions at random, 
the predicted prevalence of positives in the training data 
should be roughly the same as the success rate with novel 
test data. For example, a so-called coin toss model 
will estimate that approximately 50% of species are 
betacoronavirus hosts and would likewise successfully 
identify approximately 50% of newly discovered hosts. A 
high-performing model, however, will identify a higher 
proportion of newly discovered hosts than expected at 
random. To evaluate how models perform in this regard, 
we developed a new diagnostic called the training 
prevalence-test sensitivity curve (TPTSC) that can be 
applied to modelling problems where the training data are 
composed of a mix of true positives, true negatives, and 
false negatives, but test data only include novel true 
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Figure 3: Measuring model performance with novel data
Performance is based on the comparison of total predicted prevalence (ie, what proportion of species are predicted 
hosts of betacoronaviruses) with the sensitivity measured from validation data (ie, how many of the 47 new 
species are correctly identified). The null expectation for a model with a random performance is that these should 
be equivalent, whereas a model with strong performance will be more than that null expectation (grey line). 
(A) The training prevalence–test sensitivity curve is a novel diagnostic that is conceptually similar to the receiver–
operator curve, in that the model is evaluated at each possible scaled rank threshold between 0 and 1. (B) The same 
analysis as shown in (A), but only showing the point estimate of positivity created by each model’s internally 
calibrated threshold. For model-guided sampling, the best model would be one that predicts a low-to-medium 
positivity rate and has a disproportionately high sensitivity (ie, in the upper left corner). Both (A) and (B) show 
that the trait-based models (including the hybrid model) perform well, whereas the network-only models perform 
roughly at-random or worse than random (ie, close to the line); the ensemble model, which includes all eight, 
performs similarly to the two best trait models and better than six of the eight component models.

For more on the 
betacoronavirus reservoir 
database see https://www.
viralemergence.org/betacov

https://www.viralemergence.org/betacov
https://www.viralemergence.org/betacov
https://www.viralemergence.org/betacov
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positives (figure 3). The TPTSC plots the assumed 
prevalence in the training data against the sensitivity in 
the test data at every possible threshold from 0 to 1; these 
curves can be treated similarly to receiver–operator or 
precision-recall curves, where a higher area under the 
curve (AUC) indicates a better-than-random performance. 
Using the AUC-TPTSC scores, we found that trait-based 
and hybrid models consistently performed well (trait 1, 
AUC-TPTSC 0·79; trait 2, 0·78; trait 3, 0·73; hybrid 1, 0·67), 
whereas network methods performed at random or worse 
(network 1, 0·56; network 2, 0·42; network 3, 0·50; 
network 4, 0·52). Accordingly, the ensemble model 
performed similarly to the trait-based models (0·75).

These results have two key implications for future 
efforts in target sampling for putative reservoir hosts. 
First, ensemble modelling can be useful as a buffer 
against a variation in model quality, particularly in 

settings when the underlying drivers of model 
performance have yet to be identified. Second, and 
perhaps more importantly, models have been unable to 
have better-than-random performance without trait data 
that characterised bat ecology, even when they included 
phylogenetic data (eg, network 4). Part of this difference 
might also be attributable to the different scope of 
prediction: the response variable of trait-based models is 
betacoronavirus presence, whereas betacoronavirus-
relevant predictions were extracted from a broader set of 
predictions made by the network models. However, this 
is contraindicated by the results of hybrid 1, which 
performed similarly to the other trait-based models. 
Therefore, we conclude that making meaningful 
predictions about probable zoonotic reservoirs is best 
accomplished by incorporating detailed information on 
the host ecology. The substantially greater performance 
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Figure 4: Comparing bat betacoronavirus host prediction with dynamic model updates
Scatterplots show bat species predictions from our original ensemble in 2020 against the revised predictions after updating models with 47 new hosts (A), and the 
final predictions from the weighted revised ensemble (B). Species are coloured by their status in the respective revised ensemble: unlikely host, a retained suspected 
host, a new betacoronavirus-positive host (new host), lost as a suspected host (lost), or a novel suspected host (gained). Trendlines show a linear regression fit 
between the original and revised predictions against a 1:1 line, whereas dashed lines display the threshold cutoffs from each ensemble. The top ten in-sample and 
out-of-sample predictions from the original (C) and final (D) ensemble are also listed. *Five of the original top ten in-sample predictions, and one of the top ten 
out-of-sample predictions, have been empirically confirmed since the first iteration of our study.
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of trait-based models compared with network-based 
models provides another compelling reason, in addition 
to other One Health and conservation rationales, to 
better understand the fundamental ecology and evolution 
of bats.

Dynamic prediction
Inclusion of these 47 novel bat hosts substantially 
improved the performance of our predictive models. 
When revised with new data, our eight individual 
models explained 7–77% (mean, 33%) of the variance in 
betacoronavirus positivity, with the ensemble R² 
increasing to 62% (appendix p 23). Using our previously 
applied 90% sensitivity threshold, our revised ensemble 
identified a narrower set of 318 bat species as probable 
undetected hosts of betacoronaviruses. Predictions from 
the initial and revised ensembles were strongly correlated 
(ρ=0·97). However, after dynamically updating our 
models, our revised ensemble lost 46 suspected reservoirs 
and gained 29 new suspected reservoirs (figure 4A). The 
predicted reservoir species that were lost from the initial 
ensemble were dominated by members of the family 
Vespertillionidae, whereas new suspect hosts were 
gained in the family Vespertillionidae, Hipposideridae, 
and Molossidae.

Using the 47 newly discovered hosts, we were also able 
to tailor the updated ensemble responsively to model 
performance. To do so, we weighted the rank averaging 
across models based on their AUC-TPTSC score relative 
to the lowest performing model (network 2). In doing so, 
we effectively dropped network 2 from the ensemble, a 
choice supported by the fact the model’s predictions were 
substantially poorer than expected at random. In the 
original ensemble, this correction would have created a 
marginal improvement in the model performance 
(unweighted ensemble: AUC-TPTSC, 0·746; weighted 

ensemble: AUC-TPTSC, 0·783). Therefore, we applied 
this weighting to the ensemble of updated predictions in 
the final copy released with this study.

This weighted, revised ensemble identified 412 suspect 
bat hosts, substantially expanding the scope of plausible 
candidates for future virus discovery compared with 
the two previous unweighted ensembles (figure 4B). 
Predictions from this final ensemble iteration were 
slightly less correlated with those from our initial 
ensemble (ρ=0·92) than those in the unweighted revised 
ensemble, and these final predictions retained most of 
the suspected hosts from the original ensemble. The 
top-ranked undiscovered hosts retained between our 
model updates included Murina leucogaster, Myotis 
nattereri, M blythii, Barbastella barbastellus, and Taphozous 
melanopogon in-sample, and the top out-of-sample hosts 
consistent between ensembles included Macroglossus 
sobrinus, Rhinolophus fumigatus, R marshalli, and 
Sphaerias blanfordi (figure 4C). Only 30 predicted hosts 
were lost, most of which were from the Pteropodidae 
and Vespertilionidae families, and the Rhinolophus 
genus. Of the 107 additional predicted hosts added to our 
final ensemble, most of these bat species were observed 
in the families Vespertilionidae (primarily the genus 
Myotis), Pteropodidae (primarily the genus Pteropus), 
Molossidae (primarily the genus Mops), and 
Hipposideridae (all in the genus Hipposideros), although 
we also identified several new predicted betacoronavirus 
hosts in the families Nycteridae, Emballonuridae, 
Rhinolophidae, and Phyllostomidae. The top-ranked 
novel predicted in-sample hosts included Myotis myotis, 
Molossus nigricans, Hipposideros bicolor, Pteropus 
scapulatus, and P vampyrus, and the most likely new out-
of-sample hosts included Myotis chinensis, M altarium, 
Nycticeinops schlieffeni, Pipistrellus rueppellii, and 
Scotophilus viridis (figure 4D).
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Figure 5: Updated ensemble model predictions of geographical and evolutionary hotspots of bat betacoronavirus hosts
(A) Geographical map of the weighted revised ensemble predictions. Most predicted undiscovered betacoronavirus hosts were found in sub-Saharan Africa and 
southeast Asia, especially in Malaysia and Borneo (and less so in the high-elevation mainland hotspots where most reservoirs of severe acute respiratory syndrome 
coronavirus-like viruses are found). (B) Phylogeny of the weighted revised ensemble predictions. Predicted hosts from this final ensemble were also most likely in the 
Rhinolophus genus (clade 7), several subclades of the Pteropodidae (clades 5 and 6), and the Old World Molossidae (clade 8), even though the Molossidae family as a 
whole had less likely hosts (clade 3). Bar height in the phylogeny indicates predicted rank, and colours indicate clades identified through phylogenetic factorisation 
(red indicates clades more likely to contain hosts, blue indicates clades less likely to contain hosts; appendix p 19).
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For Rhinolophus bats specifically, our final ensemble 
identified 44 suspected hosts relative to 21 known hosts, 
suggesting that more than two thirds of potential 
reservoirs in this genus could still be unidentified. Given 
the known roles of Rhinolophus bats as hosts of SARS-like 
coronaviruses,18,21,50 it is notable that our results suggest 
that the diversity of these viruses could be undescribed 
from approximately three quarters of Rhinolophus species 
not currently known to be hosts.

As in our initial ensemble, we lastly evaluated the 
geographical and taxonomic patterns in this finalised 
set of predicted betacoronavirus hosts. Spatially, 
undiscovered bat hosts were globally distributed (in not 
only the eastern but also western hemisphere), especially 
concentrated within a narrower band of equatorial 
sub-Saharan Africa, and more starkly in Malaysia and 
Borneo (figure 5A). Notably, the geography of these 
predicted hosts contrasted with the distributions of both 
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Figure 6: Potential bridge hosts involved in SARS-CoV-2’s emergence
Each dot represents predicted species-level sharing probabilities with Rhinolophus affinis (A) and R malayanus (B), estimated according to the phylogeographical viral 
sharing model trait-3.69 Each coloured point is a different mammal species. Black points and error bars denote the means and standard errors of viral sharing probability 
for each order; the mammal orders are arranged according to their mean sharing probability, ascending from left to right. The tables below report the top 15 predicted 
non-bat species for R affinis and R malayanus; several families are disproportionately represented, including pangolins (order, Pholidota; family, Manidae), mustelids 
(order, Carnivora; family, Mustelidae), and civets (order, Carnivora; family, Viverridae). Notable species are bolded (ordered based on immediate relevance to possible 
origins): (a) the wild boar S scrofa and palm civet P larvata were both traded in wildlife markets in Wuhan, China, before the pandemic; as were (b) close relatives of the 
greater hog badger, A collaris, (the northern hog badger, A albogularis), and of the mountain weasel, M altaica, and Malayan weasel, M nudipes (the Siberian weasel, 
M siberica). (c) SARS-CoV-2-like viruses have been found in traded Sunda pangolins (M javanica) outside of Wuhan, China, though the species was not reported in 
Wuhan. (d) The ferret badger (M personata) was also reportedly of interest in WHO’s origins investigation, which explored the role of wildlife farm supply chains.



www.thelancet.com/microbe   Published online January 10, 2022   https://doi.org/10.1016/S2666-5247(21)00245-7	 9

known bat hosts and probable hosts from our initial 
ensemble, each of which instead showed a stronger 
hotspot in southern China. We also identified distinct 
clades of bats highly predicted to be hosts by the 
weighted revised ensemble (figure 5B; appendix p 19). 
Both the Rhinolophus genus and subclades of the 
Pteropodidae family again had greater concentrations of 
predicted betacoronavirus hosts, although the phylo
genetic factorisation now identified the Old World 
Molossidae family (ie, genus Mops and Chaerophon) as 
particularly likely to host these viruses, even though the 
Molossidae family as a whole had lower mean proba
bilities of having betacoronavirus hosts.

These geographical hotspots and clade-specific patterns 
of predictions could be particularly applicable for guiding 
future viral discovery and surveillance. On the one hand, 
betacoronavirus sampling in southeast Asian bat taxa 
(especially the genus Rhinolophus) might have a high 
success of viral detection (and isolation) of sarbecoviruses 
specifically, but might not substantially improve existing 
bat sampling gaps.5 On the other hand, the discovery of 
novel betacoronaviruses in pteropodid clades, Old World 
Molossidae, and bats in the Neotropics could substantially 
revise our understanding of the bat–virus association 
network relative to the coevolutionary distribution of bat 
betacoronaviruses.38 For example, predicted bat hosts 
in the Neotropics might be unlikely reservoirs of 
sarbecoviruses (given their known distribution in the 
eastern hemisphere) but would be expected to carry 
novel viruses from the subgenus merbecovirus. Such 
discoveries could be particularly important for global 
health security, given the surprising identification of 
MERS-like viruses within the merbecoviruses in Mexican 
and Belizean bats31,58 and the likelihood that post-COVID 
research efforts will focus disproportionately on Asia, 
despite the near-global presence of bat betacoronavirus 
hosts.

Insight into SARS-CoV-2’s emergence
Our work suggests that more than 400 species of bats 
might host undiscovered betacoronaviruses and that these 
species can be prioritised for sampling more efficiently via 
machine learning. Although our models do not target 
sarbecoviruses specifically, these efforts might help to find 
more SARS-like viruses in wildlife and might even uncover 
the direct progenitor of SARS-CoV-2, particularly given 
that 44 species of horseshoe bats are predicted to host 
undiscovered betacoronaviruses. However, our models 
provide otherwise limited insight into the origins of 
SARS-CoV-2, given the probable role of non-bat bridge 
hosts in spillover to humans.59,60 We, thus, attempted a 
similar model ensemble in June, 2020, using five of our 
eight models to predict the broader mammal–virus 
network with a focus on potential betacoronavirus bridge 
hosts. At the time, only 30 non-bat hosts of beta
coronaviruses were available in our data. Among the 
five models, we found a poor concordance in predictions 

(appendix p 24). The predictions were also heavily biased 
towards well studied and domesticated mammals 
(eg, Ovis aries, Vulpes vulpes, Capra hircus, Procyon lotor, and 
Rattus rattus), indicating that the sampling bias dwarfed 
biological signals. As such, we evaluated these models as 
having little value or consistency for an ensemble. This 
finding might be relevant given other studies have also 
modelled the susceptibility to SARS-CoV-2 across 
mammals; however, some have used more detailed trait 
data and thus probably make better predictions on this 
broader taxonomic scale.61,62

Instead of further calibrating this mammal-wide 
ensemble, we focused on the outputs of trait 3, which 
predicted how species should share viruses in nature 
based on their evolutionary history and geography. In 
June, 2020, we predicted the mammals expected to share 
viruses with R affinis and R malayanus, which hosted the 
two viruses (RaTG13 and RmYN02) most relevant to 
SARS-CoV-2’s origins known at that time23,63 (a closer 
related virus, RpYN06, has since been discovered in 
Rhinolophus pusillus).64 We predicted that these two bat 
species are disproportionately more likely to share viruses 
with pangolins (of the order Pholidota) and carnivores (of 
the order Carnivora), including civets (Viverridae family), 
mustelids (Mustelidae family), and cats (Felidae family; 
appendix p 25). These predictions have been broadly 
validated by the role of the masked palm civet (P larvata) 
in the original SARS-CoV outbreak,65,66 the discovery 
of SARS-CoV-2-like viruses in the Sunda pangolin 
(Manis javanica),34 and extensive so-called spillback of 
SARS-CoV-2 into captive big cats, domestic cats, and both 
farmed and wild mink.67,68 Notably, only the association 
between palm civets and SARS-CoV was present in the 
training data used for generating predictions from trait 3.

Given these successful predictions, we expect there 
might be potential insights into SARS-CoV-2’s emergence 
when these predictions are paired with data on 
wildlife supply chains. Of the top 30 species (figure 6), 
two are known to have been traded in wildlife markets in 
Wuhan, China, immediately before the pandemic (the 
wild boar, Sus scrofa, and the palm civet, Paguma larvata), 
as were two species closely related to those in the top 
predictions (the Siberian weasel, Mustela siberica; the 
northern hog badger, Arctonyx albogularis).70 Another top 
species, the Burmese ferret badger (Melogale personata), 
was also reportedly of interest in WHO’s origins 
investigation.71 Our models indicate that any of these 
species would be expected to regularly share viruses with 
relevant Rhinolophus bats in nature. Although bats use 
habitats differently than most of these probable bridge 
host species, opportunities for contact exist: one study 
from Gabon found cohabitation among pangolins, bats, 
and other mammals in burrows.72 Many species 
potentially implicated in the origins of SARS-CoV-2 could 
therefore have plausibly acquired a progenitor to 
SARS-CoV-2 in nature, at some point before contact with, 
and spillover into, humans.73 We suggest that this 
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shortlist of species (figure 6) might, therefore, be useful 
for further investigations into the identity of potential 
bridge hosts, especially in combination with the experi
mental evaluation of susceptibility.

Conclusions
This Review is the first to show, by using predictive 
validation, that machine learning models could help to 
optimise wildlife sampling for undiscovered viruses. As 
such, the growing toolkit of models that predict host–
pathogen interactions are likely to aid future efforts both 
to predict and prevent pandemics and to trace the origins 
of novel infections after they emerge. However, these 
tools will work best if they are implemented through a 
dynamic process of prediction, data collection, validation, 
and updating, as we have implemented here. Although 
some previous studies have incidentally tested specific 
hypotheses (eg, filovirus models and bat surveys,7,11 
henipavirus models and experimental infections,2,16 
and vector–virus models and competence trials13–15), 
predictions are almost never subject to systematic 
verification. More dialogue between modelers and 
empiricists is necessary to confront this research gap. 
This improved communication is particularly necessary 
when establishing a species’ role as a viral reservoir rather 
than incidental hosts; susceptibility is only one aspect 
of host competence.1,10 Future work, including the 
longitudinal tracking of viral shedding over space and 
time, the isolation of the live virus from wild animals, and 
the experimental confirmation of viral replication, can 
support more robust conclusions about whether predicted 
host species actually play a role in viral maintenance16 as 
well as inform related efforts to pinpoint and minimise 
risk factors for pathogen spillover.74,75

This Review is also the first to benchmark the 
performance of a set of differently calibrated and 
designed statistical models all trained for one host 
prediction task. We found a range in model performances, 
even among a set of models that all performed well on 
training data. This finding underscores the need to 
incorporate long-term validation into similar studies and 
suggests there might be key lessons about viral ecology 
to be learned from this type of process. In our study, we 
found that network-based models performed mostly at 
random in validation against new bat hosts, whereas 
trait-based models were more successful in their 
predictions. There are two possible explanations for this 
difference in model performance. First, models that 
successfully predict the broader mammal–virus network 
are likely to vary in performance when subset to any 
given node. This likelihood might seem contradictory to 
the idea that understanding the broader so-called rules of 
life underpinning mammal–virus interactions will 
improve predictions in specific cases. However, there are 
ways to combine the strengths of both network-based 
and trait-based approaches. In a similar study, network-
based predictions of zoonotic risk performed essentially 

at random, whereas a hybrid approach that embedded 
network predictions in targeted, trait-based models 
performed better than any approach in isolation.76 Future 
work should aim to develop and benchmark these types 
of hybrid model approaches more extensively and treat 
exclusively network-driven predictions with caution in 
the interim.

Second, models that integrate data on host ecology, 
evolution, and biogeography are likely to make more 
powerful predictions than those that mostly do not 
incorporate biology. This finding has many broader 
implications. Most notably, it suggests that filling gaps in 
the basic biology of bats is a key step towards zoonotic 
risk assessment and can benefit both pandemic 
prevention and bat conservation. High-quality host 
genomes are crucial to developing better predictive 
features, including genome composition bias metrics, 
improved host phylogenetic trees, and immunological 
traits.62,77–80 Whole-genome sequencing through initiatives 
such as the Bat1K project will expand the sparse available 
data on bat genomics and can facilitate other insights 
into the immune pathways used by bats to harbour 
virulent viruses.81–83 Targeted sequencing could also 
identify endogenised viral elements in bat genomes, 
shedding light on bat virus diversity and the evolution of 
bat immune systems.84,85 Large-scale research networks, 
such as the Global Union of Bat Diversity Networks and 
its member networks, will further facilitate efficient 
sample sharing and ensure proper partnerships and 
equitable access and benefit sharing of knowledge across 
countries.86,87 Additionally, museum specimens and 
historical collections offer opportunities to retrospectively 
screen samples for betacoronaviruses (thereby testing 
predictions), sequence tissue for an assembly of host 
genomes, and enhance understanding of complex host–
virus interactions.88

Lastly, our iterative modelling of bat betacoronaviruses 
fits into a broader set of synergies in One Health research 
on bats, which can create win–win scenarios for 
conservation and outbreak prevention. For example, 
North American bats are threatened by an emerging 
disease, white-nose syndrome,89 which has documented 
synzootic interactions with other bat coronaviruses;90 at 
least seven North American bat species that can be 
infected by the fungal pathogen (Eptesicus fuscus, 
Myotis ciliolabrum, Myotis lucifugus, Myotis septentrionalis, 
Myotis velifer, Myotis volans, and Tadarida brasiliensis) are 
among the 412 bat species that we predicted could be 
undiscovered betacoronavirus hosts. Although our 
predictions do not imply bat susceptibility to SARS-CoV-2 
specifically (and experimental infections of E fuscus have 
been unsuccessful91), efforts to minimise the risks of 
SARS-CoV-2 spillback into novel bat reservoirs,92–96 as 
well as to understand the dynamics of other bat 
coronaviruses, will both reduce zoonotic risk and help to 
understand and counteract disease-related population 
declines. Similarly, conservationists have expressed 
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concern that the negative framing of bats as the source of 
SARS-CoV-2 has affected public and governmental 
attitudes toward bat conservation;97 this can fuel negative 
responses, including indiscriminate culling (ie, the 
reduction of populations by slaughter), which has already 
occurred in response to COVID-19 even outside of Asia 
(where a spillover probably occurred).98 Evidence shows 
that culling has many negative consequences, not only 
threatening population viability99 but also possibly 
increasing viral transmission within the very species 
that are targeted.100,101 Bat conservation programmes and 
One Health practitioners should continue to work 
together to find sustainable solutions for humans to live 
safely alongside wildlife and to communicate with the 
public about the ecological importance of these highly 
vulnerable species and the science of pathogen spillover.
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