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Data Proliferation, Reconciliation, 
and Synthesis in Viral Ecology
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The fields of viral ecology and evolution are rapidly expanding, motivated in part by concerns around emerging zoonoses. One consequence is 
the proliferation of host–virus association data, which underpin viral macroecology and zoonotic risk prediction but remain fragmented across 
numerous data portals. In the present article, we propose that synthesis of host–virus data is a central challenge to characterize the global virome 
and develop foundational theory in viral ecology. To illustrate this, we build an open database of mammal host–virus associations that reconciles 
four published data sets. We show that this offers a substantially richer view of the known virome than any individual source data set but also 
that databases such as these risk becoming out of date as viral discovery accelerates. We argue for a shift in practice toward the development, 
incremental updating, and use of synthetic data sets in viral ecology, to improve replicability and facilitate work to predict the structure and 
dynamics of the global virome.
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The emergence of SARS-CoV-2 was a harsh reminder  
 that uncharacterized wildlife viruses can suddenly 

become globally relevant. Efforts to identify wildlife viruses 
with the potential to infect humans and to predict spillover 
and emergence trajectories are becoming more popular than 
ever (including with major scientific funders). However, 
the value of these efforts is limited by an incomplete under-
standing of the global virome (Wille et al. 2021). Significant 
knowledge gaps exist regarding the mechanisms of viral 
transmission and replication, host–pathogen associations 
and interactions, spillover pathways, and several other 
dimensions of viral emergence. Furthermore, although bil-
lions of dollars have been invested in these scientific chal-
lenges over the last decade alone, much of the data relevant 
to these problems remains unsynthesized. Fragmented data 
access and a lack of standardization preclude an easy rec-
onciliation process across data sources, making the whole 
less than the sum of its parts and hindering viral research 
(Wyborn et al. 2018).

In the present article, we propose that data synthesis is 
a seminal challenge for translational work in viral ecology. 
This requires researchers to go beyond the usual steps of 
data collection and publication and to develop a community 
of practice that prioritizes data synthesis and reconciles 
semireproduced work across different teams and disciplines. 
As an illustrative example, we describe the analytical hurdles 
of working with host–virus association data, a format that 

characterizes the global virome as a bipartite network of 
hosts and viruses, with pairs connected by observed poten-
tial for infection. Recent studies highlight the central role for 
these data in efforts to understand viral macroecology and 
evolution (Carlson et al. 2019, Dallas et al. 2019, Albery et al. 
2020), to predict zoonotic emergence risk (Han et al. 2015, 
2016, Olival et al. 2017, Wardeh et al. 2020), and to antici-
pate the impacts of global environmental change on infec-
tious disease (https://doi.org/10.1101/2020.01.24.918755 
[preprint: not peer reviewed], Gibb et  al. 2020, Johnson 
et al. 2020). Several bespoke data sets have been compiled to 
address these questions, each of which differs in sources and 
scope. Scientific knowledge of the global host–virus network 
is continually evolving as a consequence of novel discoveries, 
changing research priorities and taxonomic revision, and 
as interest in this field has grown, so has the fragmentation 
of total knowledge across these data sets. To illustrate this 
problem (and a simple solution), we compare and reconcile 
four major host–virus association data sets, each of which is 
different enough that we anticipate the results of individual 
studies could be strongly shaped by choice of data set.

Four snapshots of one host–virus network
Although host–pathogen association data exist in dozens of 
sources and repositories, there are four particularly large and 
widely used published data sets, which each capture between 
0.3% and 1.5% of the estimated 50,000 species of mammal 
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viruses (Carlson et al. 2019). Individually, each of these data 
sets forms the basis for numerous studies in host–pathogen 
ecology and macroecology, and the differences between 
them—especially with regards to taxonomic scope, avail-
able metadata, and frequency of data updates—make them 
preferable for different purposes (table 1). However, these 
differences may also complicate cross-comparison and syn-
thetic inference.

GMPD 2.0. The Global Mammal Parasite Database (GMPD; 
Nunn and Altizer 2005), started in 1999 and now in its 
second public version (Stephens et al. 2017), emerged from 
efforts to compile mammal–parasite association data from 
published literature sources. Construction of the GMPD 
used a variety of similar strategies that combined host Latin 
names with a string of parasite-related terms to search 
online literature databases. Pertinent literature was then 
manually identified and relevant association and metadata 
were compiled. The initial database was focused on primate 
hosts (Nunn and Altizer 2005) and expanded to include 
separate sections for ungulates (Ezenwa et al. 2006) and car-
nivores (Lindenfors et al. 2007). 

In 2017, GMPD 2.0 was released, which merged these 
three previously independent databases (Stephens et  al. 
2017). The updated data set encompasses 190 primate, 
116 ungulate, and 158 carnivore species, and records their 
interactions with 2412 unique “parasite” species, includ-
ing 189 viruses, as well as bacteria, protozoa, helminths, 

arthropods, and fungi. Notable improvements GMPD 2.0 
are the construction of a unified parasite taxonomy that 
bridges occurrence records across host taxa, the expansion 
of host–parasite association data along with georeferencing, 
and enhanced parasite trait data (e.g., transmission mode). 

The original data are available as a web resource 
(www.mammalparasites.org), and the data from GMPD 
2.0 can also be downloaded as static files from a data 
paper (Stephens et  al. 2017). In addition, one subsec-
tion of the GMPD, named the Global Primate Parasite 
Database, has been independently maintained and 
regularly updated by Charles Nunn (data available at 
https://parasites.nunn-lab.org). Consequently, the primate 
subsection of GMPD 2.0 includes papers published up to 
2015, whereas the ungulate and carnivore subsections stop 
after 2010 (Stephens et al. 2017).

EID2. The ENHanCEd Infectious Diseases Database (EID2), 
curated by the University of Liverpool, may be the largest 
dynamic data set of any symbiotic interactions (Wardeh 
et  al. 2015). EID2 is regularly compiled from automated 
scrapes of two web sources: publication titles and abstracts 
indexed in the PubMed database and the National Center 
for Biotechnology Information (NCBI) Nucleotide Sequence 
database (along with its associated taxonomic metadata). 
The EID2 data is structured using the concepts of car-
rier and cargo rather than host and pathogen, because it 
includes a number of ecological interactions beyond the 

Table 1. Available “big data” on host–virus associations, and major features of each data set.

Data 
set Source

Nature 
of data 
set

Association 
records

Host 
species

Virus 
species

Original 
taxonomic 
scope of 
pathogens

Original 
taxonomic 
scope of 
hosts

Diagnostic 
method 
identified 
(PCR, 
serology, 
etc.)? URL of current version

GMPD2 University 
of Georgia

Static 895 226 154 All parasites 
and pathogens 
(including 
viruses, 
bacteria, 
macroparasites, 
protozoans, 
prions)

Mammals 
(subset: only 
ungulates, 
carnivores, 
and 
primates)

Yes http://onlinelibrary.wiley.
com/doi/10.1002/
ecy.1799/suppinfo

EID2a University 
of Liverpool 

Dynamic 1,342 418 398 All symbionts 
(including 
viruses, 
bacteria, 
macroparasites, 
protozoans, 
prions, green 
algae, molluscs, 
and cnidarians)

Vertebrates 
and 
invertebrates

No https://eid2.liverpool.
ac.uk/

HP3 EcoHealth 
Alliance

Static 2,784 751 561 Viruses Mammals Yes https://github.com/
ecohealthalliance/HP3

Shaw Shaw 
LP and 
colleagues 
(2020).

Static 4,210 957 733 Viruses and 
bacteria

Vertebrates Yes https://doi.org/10.6084/
m9.figureshare.8262779

Note: Numbers of unique association records and host, virus, and pathogen species are all derived from the reconciled version presented in the 
CLOVER database, and therefore these numbers may differ from those presented in the main text (which are taken from the source data, or from 
self-reporting by the data curators). aNumber of associations and taxa accurate as of 2015 static release in Scientific Data paper.
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scope of normal host–pathogen interactions, including 
potentially unresolved mutualist or commensal associa-
tions. Interactions are stored as a geographic edge list, where 
each carrier and cargo can also have locality information; 
additional metadata include the number of sequences in 
GenBank and related publications. 

EID2’s dynamic web interface (currently available through 
download on a limited, query-by-query basis that research-
ers often manually bind or by personal correspondence with 
data curators) to date contains information encompass-
ing 1560 mammal carrier species and 3986 microparasite 
or macroparasite cargo species, of which 1446 are viruses 
(Wardeh et al. 2020). However, many researchers continue to 
use the static, open release of EID2 from a 2015 data paper 
(Wardeh et al. 2015), which we focus on in the present article 
for comparative purposes as a stable version of the database 
available to the community of practice. The EID2 data were 
originally validated for completeness against GMPD 1.0.

HP3. The Host–Parasite Phylogeny Project data set (HP3) 
was developed by EcoHealth Alliance over the better part 
of a decade. Published along with a landmark analysis 
of the correlates of zoonotic potential (data from Olival 
et  al. 2017), the HP3 data set consists of 2805 associations 
between 754 mammal hosts and 586 virus species. These 
were compiled from literature published between 1940 and 
2015, on the basis of targeted searches of online reference 
databases. Complementary with the search strategy used for 
the GMPD, rather than starting with a list of host names, 
HP3 started with names of known mammal viruses listed 
in the International Committee on Taxonomy of Viruses 
(ICTV) database. These virus names along with their syn-
onyms were then used as search terms to identify literature 
containing host–virus association data. 

Data collection and cleaning for HP3 began in 2010, and 
the database has been static since 2017; it can be obtained 
as a flat file in the published study’s data repository (Olival 
et al. 2017). HP3 includes a host–virus edge list (see box 1), 

separate files for host and virus taxonomy, and separate files 
for host and virus traits. Host–virus association records are 
provided with a note about method of identification (poly-
merase chain reaction [PCR], serological methods, etc.), 
which may be useful for researchers interested in the differ-
ent levels of confidence ascribed to particular associations 
(https://doi.org/10.1101/2020.05.22.111344 [preprint: not 
peer reviewed]). HP3’s internal taxonomy is also harmo-
nized with two mammal trees (Bininda-Emonds et al. 2007, 
Fritz et  al. 2009), facilitating analyses that seek to account 
for host phylogenetic structure while testing hypotheses 
about viral ecology and evolution (e.g., Becker et  al. 2020, 
https://doi.org/10.1101/2020.02.25.965046 [preprint: not 
peer reviewed], Olival et  al. 2017, Washburne et  al. 2018, 
Guth et al. 2019, Park 2019, Albery et al. 2020, Mollentze and 
Streicker 2020). HP3 was also validated against GMPD 1.0.

Shaw. In recent work, Shaw and colleagues (2020) built a 
host–pathogen edge list by combining a systematic literature 
search with cross-validation from several of the above-men-
tioned data sets. Similar to the construction of HP3, Shaw 
and colleagues (2020) started with lists of known pathogenic 
bacteria and viruses found in humans and animals. They 
then conducted Google Scholar searches pairing pathogen 
names with disease-related keywords, followed by manual 
review of search results. For well-studied pathogens, they 
limited their manual review to a subset of the top 200 most 
relevant publications as determined by Google. From the 
resulting literature searches, Shaw’s team compiled 12,212 
interactions between 2656 vertebrate host species (includ-
ing, but not limited to, mammals) and 2595 viruses and 
bacteria. GMPD2, EID2, and the Global Infectious Diseases 
and Epidemiology Network Guide to Medically Important 
Bacteria (Gideon Informatics and Berger 2020) were used to 
validate the host–pathogen associations. 

The data set is available as a static flat file through figshare 
and the project GitHub repository (Shaw et al. 2020). Host–
pathogen associations are provided alongside pathogen 

Box 1. Glossary.

Association data: a format that records ecological interactions between a host and symbiont (an association) in the form of an edge list.
Data provenance: The primary literature origin of a particular record or set of records in a synthetic data set.
Data reconciliation: the task of harmonizing the language of a given data set’s fields and metadata to allow a researcher to merge data 
of different provenance, and generate a new synthetic product.
Edge list: a table, spreadsheet, or matrix of “links” in a host–symbiont network, where each row records the known association of a 
different host–symbiont pair.
Flat file: a static document in Excel or similar spreadsheet or data format, with no dynamic component (no updating) and all data 
available from a single file rather than a query interface.
Metadata: additional data describing focal data of interest and that is relevant to interpretation and analysis. Important examples for 
host–virus associations include sampling method (for example, serological assay, PCR or pathology), date and geographical location 
of sampling, and standardized information on host and virus taxonomy.
Open data: data that is directly and freely accessible for reuse and exploration without impediment, gatekeeping, or cost restriction.
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metadata (e.g., genome size, bacterial traits, transmission 
mode, zoonotic status) and diagnostic method (i.e., PCR, 
pathogen isolation, pathology). The data set  al.o includes 
a comprehensive host phylogeny, developed specifically for 
the study using nine mitochondrial genes for downstream 
analyses of host phylogenetic similarity and host breadth.

A reconciled mammalian virome data set
Some of these data sets were validated against each other 
during production, and others have been used for cross-
validation in analytical work (Albery et al. 2020), and certain 
studies have generated a study-specific ad hoc reconciled 
data set (https://doi.org/10.1101/2020.02.25.965046 [pre-
print: not peer reviewed], Gibb et  al. 2020). However, no 
work has been published with the primary aim of recon-
ciling them as correctly, comprehensively, and reproduc-
ibly as possible. More recently developed data sets such as 
Shaw’s can inherently draw on a greater cumulative body 
of scientific work. This could mean they include most of 
the data captured by previous efforts, but we found there 
are substantial differences among all four data sets. In isola-
tion, we expect that these differences could affect ecologi-
cal and evolutionary inference in ways that are difficult to 
quantify, with special relevance to significance thresholds 
in hypothesis-testing research (i.e., different data sets may 
confer different power to statistical tests). We expected that 
separate host–virus data sources could be standardized into 
one shared format, allowing them to cover a greater percent-
age of the global virome, a greater diversity of host species, 
and obviating the need for researchers to either choose 
between individual data sets or implement ad hoc solutions 
that merge them prior to analysis.

To illustrate the potential for comprehensive data recon-
ciliation, we harmonized the four major data sets described 
in the present article, creating a new synthetic CLOVER 
data set out of the four leaves (which we have made avail-
able with this study). Doing this required harmonizing 
and standardizing both host and virus taxonomy, as well as 
metadata describing the strength of evidence for interac-
tions. This process involved several steps applied to each 
source data set. First, we manually harmonized virus names 
across all four data sets to revolve subtle formatting differ-
ences. Second, we applied a standardized scheme of virus 
detection methods using information provided in each 
source data set (described further below). Finally, using the 
R package taxize (Chamberlain and Szöcs 2013), we accessed 
the most current binomial for each host species and applied 
a standardized host and virus taxonomy (species, genus, 
family, order, and class) using the same taxonomic hierar-
chy (Schoch et al. 2020) as the NCBI’s Taxonomy database 
(ncbi.nlm.nih.gov). Host (n = 34) and virus (n = 24) species 
that did not return an exact automated match (i.e., fuzzy 
matches) were manually checked and resolved where pos-
sible against the NCBI Taxonomy database (or against the 
International Union for Conservation of Nature Red List 
database, https://iucnredlist.org, for 14 mammal species 

without a match in the NCBI Taxonomy database). All virus 
names are given at the species level even if finer classifica-
tions exist, and viruses that could not be resolved to species 
are resolved to the next-lowest taxonomic level (genus or 
family, although all original reported names are retained 
and accessible from the column “VirusOriginal”). Host and 
virus names, metadata, NCBI unique taxonomic identifiers, 
virus ICTV ratification status, and primary data sources as 
originally described were included in the combined data set, 
to ensure traceability.

With all four data sets taxonomically consistent, we were 
able to show that each only covered a portion of the known 
global mammalian virome, even for the most studied hosts 
and viruses (figure 1). Our taxonomic harmonization helped 
reconcile some discrepancies, increasing overlap among 
the data sets (figure 2), but notable differences remained. 
This could confound inference: For example, using a simple 
linear model, we found that data provenance (see box 1) 
explained 8.8% of variation in host species’ viral diversity 
(but only 4.7% after harmonization). When viral ecology 
studies report different findings based on slight variation 
around a significance threshold, readers should therefore 
consider whether subtle differences in the underlying data 
sets might account for such variation.

Integrated data sets move us a step closer to resolving 
this uncertainty. The CLOVER data set covers 1085 mam-
mal host species and 831 associated viruses. This only rep-
resents 16.9% of extant mammals (Burgin et al. 2018) and, 
at most, 2.1% of their viruses (Carlson et al. 2019)—a mar-
ginal improvement over the 957 mammal hosts (14.9%) 
and 733 viruses (1.8%) in the reconciled Shaw data subset 
but an improvement nonetheless. The biggest functional 
gain is not in the breadth of the reconciled data but in 
its depth: the Shaw database records 4209 interactions 
among these host and virus species, whereas CLOVER 
captures 5477. Given that previous studies have estimated 
that 20%–40% of host–parasite links are unknown (in 
GMPD2 (Dallas et  al. 2017)), this 30% improvement is 
notable and shows the value of data synthesis: Both build-
ing out and filling in synthetic data sets will significantly 
improve the performance of statistical models, which are 
usually heavily confounded by matrix sparseness (https://
doi.org/10.1101/2020.05.22.111344 [preprint: not peer 
reviewed], Dallas et al. 2017).

In addition, harmonization of metadata on virus detec-
tion methods across data sets enables a greater scrutiny 
of the strength of evidence in support of each host–virus 
association. We applied a simplified detection method 
classification scheme (i.e., either serology, PCR or sequenc-
ing, isolation or observation, or method unknown) based 
on descriptions in the source databases or, where these 
are not provided, adopted the most conservative defini-
tion given the data source in question (i.e., EID2 entries 
derived from the NCBI Nucleotide database are classified 
under PCR or sequencing, although they might also qualify 
for the next strongest level of isolation or observation, 
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whereas entries derived from PubMed are classified under 
method unknown). Of the 5477 unique host–virus pairs in 
CLOVER, a total of 2160 (39%) have been demonstrated 
using either viral isolation or direct observation and 1871 
(34%) via PCR or sequencing-based methods (with some 
overlap, because some associations have been reported with 
both of the above methods). Notably, a substantial propor-
tion (2256, 41%) are based solely on serological evidence, 
which, although it is an indicator of past exposure, does not 
reflect host competence (i.e., effectiveness at transmitting 
a pathogen; Gilbert et al. 2013, Lachish and Murray 2018, 
Becker et  al. 2020). Such harmonized metadata facilitate 
investigation of inferential stability using various types 
of evidence, as well as enabling a best practice of subset-
ting data for a particular research purpose. For example, 

serological assays are a much weaker 
form of evidence if the aim of a study 
is zoonotic reservoir host prediction, 
whereas virus isolation data open new 
avenues for testing hypotheses about 
reservoir competence (https://www.
biorxiv.org/content/10.1101/2021.01.01. 
425052v1).

Data synthesis inherently relies on 
a scientific community that generates 
new, often conflicting, data. The gen-
eration of truly novel data and finding 
ways to resolve existing observations that 
are in conflict are two equally viable 
paths to scientific knowledge produc-
tion. However, in the current funding 
landscape, researchers may have a sig-
nificant incentive to position themselves 
as creating an entirely “novel” data set 
from scratch, even if it partially repli-
cates available data sources, or to focus 
their limited resources on data sets that 
improve the depth of knowledge within 
a narrow scope (e.g., a focus on spe-
cific taxonomic groups). But when test-
ing microbiological or ecoevolutionary 
hypotheses, rather than simply using the 
newest published data set as a benchmark 
for which one is most up to date, we sug-
gest a necessary shift in scientific cultural 
norms toward using synthetic, reconciled 
data as an analytical best practice. As an 
example, two studies have already used 
CLOVER to advance the science of viral 
ecology: One showed that the apparently 
higher diversity of zoonotic pathogens in 
urban-adapted mammals is likely a con-
sequence of sampling bias (https://www.
biorxiv.org/content/10.1101/2021.01.02.4
25084v1 [preprint: not peer reviewed]), 
whereas another showed that a two-step 

process of network imputation and graph embedding can be 
used to substantially improve a model that identifies zoonotic 
viruses on the basis of their genome composition (https://
arxiv.org/abs/2105.14973 [preprint: not peer reviewed]).

To make this kind of work possible, at least a handful of 
researchers will need to continue the task of stepwise integra-
tion, using data sets that synthesize existing knowledge across 
teams, institutions, and funding programs to fill in critical data 
with even more detail. The required tasks (e.g., identifying 
relevant source data, cleaning taxonomic information, harmo-
nizing metadata on diagnostic information or spatiotemporal 
structure) can be time consuming but are relatively straight-
forward to conduct and can increasingly be automated thanks 
to the rapid growth of new tools for reproducible research 
(Boettiger et al. 2015, Lowndes et al. 2017, Colella et al. 2020). 

Figure 1. Network representation of the CLOVER data set. The nodes of the 
entire CLOVER network have been projected to a two-dimensional space using 
t-SNE, and disaggregated to each of the four data sources. In each panel, only 
the nodes found in the given data set are shown with filled symbols (the unfilled 
symbols indicate associations recorded in the other data sets); the triangles 
represent mammal hosts, whereas the circles represent viruses. In each data set, 
a nontrivial proportion of associations is completely unique and unrecorded 
elsewhere, even after taxonomic reconciliation. This was the case for 186 of 
1342 associations in EID2 (13.8%), 611 of 2783 in HP3 (22%), 271 of 895 in 
GMPD2 (30.3%), and 1707 of 4210 in Shaw (40.5%).
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There is a clear need and no obvious technical barrier to invest 
more effort in data harmonization: Engaging in this process as 
a form of open science will accelerate progress for the entire 
research community.

Relevance to future efforts
In the present article, we showed that a simple data synthesis 
effort can create a dramatically more comprehensive data set 
of mammal–virus associations. However, this is a temporary 
solution and one that is becoming less sustainable given 
global investments in accelerating the rates of viral discovery 
in wildlife (Wille et al. 2021). Even if similar data sets con-
tinue to proliferate or if newer iterations of existing data sets 
are periodically released, static data sets will quickly become 
out of date, and their relation to the most recent empirical 
knowledge will be left unclear. This is already a significant 
issue with the CLOVER data set, which becomes much 
sparser after 2010, both in terms of the overall number of 
reported host–virus associations, and the reporting of novel 
(i.e., previously undetected) associations (figure 3a, 3b). 
This sparseness is most likely because of time lags between 
host–virus sampling in the field, the reporting or publication 
of associations and their eventual inclusion in one of the 

component data sets and suggests that CLOVER may now be 
missing up to a decade’s worth of complete host–virus data. 
This gap is concerning, given that the last decade has seen 
unprecedented and exponential growth in viral discovery 
and research effort in wildlife (figure 3c).

In the near term, microbiologists and data scientists may 
therefore need to approach the task of data reconciliation 
with a much broader scope and develop a more sustainable 
data platform—one that is dynamic, and minimizes the time 
between scientific discoveries and their documentation in 
an aggregate data source. The reconciliation process we 
describe in the present article will need to evolve in order 
to power these kinds of databases; to integrate data sources 
that update every day (e.g., NCBI’s GenBank database or 
the Global Biotic Interactions database), the taxonomic 
reconciliation process cannot rely on manual curation 
steps such as those undertaken to generate CLOVER. The 
development of automated taxonomic pipelines is not an 
unfamiliar challenge in ecological data synthesis, but it poses 
a particular problem with respect to viral taxonomy, which 
is in a constant state of flux. Often, a substantial lag between 
virus discovery and official ratification by the International 
Committee on the Taxonomy of Viruses (ICTV) exacerbates 
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Figure 2. Proportional overlap between data sets before and after host and virus taxonomic reconciliation. The 
percentages and fill colors in these tiles can be interpreted as the percentage of the y-axis that was contained in the x-axis; 
for example, 31% of originally reported EID2 hosts were also represented in GMPD2, whereas 47% of reconciled Shaw 
associations were also contained in HP3. The darker colors represent higher proportions of shared data.
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the gulf between scientific knowledge and available data. 
Furthermore, the global virome is not simply one static, 
incompletely characterized entity; viruses evolve more rap-
idly than most targets of biodiversity databases, and the 
continual emergence of new lineages through reassortment 
and recombination unfortunately implies that host–virus 
associations are not a static property that can be captured 
through snapshots of the system (Shi et al. 2018).

Given these problems, databases might even be forced 
in the long term to move away from the familiar format 
of species concepts and toward data structures based on 
operational taxonomic units (OTUs). Although an OTU-
based host–virus network would be better tailored to the 
underlying virology, it will require the incorporation of 
genetic sequence data, which comes with additional logisti-
cal challenges in terms of both data curation and the logistics 
and governance of data sharing. In the coming decade, these 
kinds of radical solutions may be unavoidable.

Steps toward an atlas of the global virome
Scaling up the aggregation of host–virus association data 
will not be easy, but is not an insurmountable endeavor. We 

suggest working backward from the intended end product: 
The goals outlined in the present article are best served by 
a central system (with an online access point to the con-
sumable data), spanning the information available from 
multiple data sources (which demands backend engines 
drawing from existing databases while data provenance is 
tracked and proper attribution is ensured). Furthermore, 
the most valuable data resource would be easily updat-
able by practitioners (which demands a portal for manual 
user input or an integrated publishing toolkit to work 
from flat files). For users, these data should be accessible 
in a programmatic way (through a web API allowing for 
bulk download or other interfaces such as an R package), 
encourage reproducibility (through versioning of the entire 
database, or of a specific user query), and offer predictable 
formats (through a data specification standard devised by a 
multidisciplinary group).

Fortunately, the field of ecoinformatics has the capacity to 
help inform this design and development process. Massive 
bioinformatic data portals such as the Global Biodiversity 
Informatics Facility (gbif.org), the Encyclopedia of Life 
(eol.org), and the Ocean Biodiversity Information System 

Figure 3. Temporal trends in host–virus association reports and virus-related research effort. The bar graphs show, for 
each year, the annual number of reported associations color-coded by source database, which can include duplicates of the 
same association reported over multiple years (a), and the number of novel unique associations (i.e., unreported before 
that year) (b). The years reflect the date when an association was reported, either in a published paper or report (for 
literature-based records) or to the NCBI Nucleotide database (EID2 only). The trend plot (c) shows the trend in virus-
related publications across all hosts in the CLOVER data set up to 2020 (PubMed search term: “host binomial and virus 
or viral”). The points represent the annual total publications summed across all host species, and point size denotes the 
number of host species with virus-related publications in a given year.
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(obis.org) all offer most of the functionalities we outline 
in the present article, although they are aimed at slightly 
different forms of biodiversity data. More recent contribu-
tions dedicated to ecological network data include GloBI 
(for global biotic interactions; Poelen et al. 2014), helminthR 
(Dallas 2016), and mangal (Poisot et al. 2016), all of which 
reconcile their taxonomy with other databases through the 
use of unique taxon keys. In short, researchers interested in 
the global virome need not divert their attention, resources, 
and effort away from the pressing tasks related to monitor-
ing viral pathogens. Rather, they can leverage existing prod-
ucts, expertise, and capacity in neighboring fields to bolster 
their ability to do so. Given the eagerness ecologists have 
shown to participate in SARS-CoV-2 research, we anticipate 
that our field may be especially well poised to jump into 
this task after the pandemic. We aim, in our current efforts, 
to lay that groundwork: The CLOVER database is the first 
step toward a project called the Virome in One Network, a 
prototype of the next-generation database described in the 
present article.

An atlas of the global virome would have inherent value 
for the entire scientific community. When the format of a 
data set is well established, it allows for the development of 
tools that mine the data in real time. For example, the field 
of biodiversity studies has adopted the concept of essen-
tial biodiversity variables, which can be updated when the 
underlying data change (Pereira et al. 2013, Fernández et al. 
2019, Jetz et  al. 2019). Having the ability to revisit predic-
tions about the host–virus network could improve models 
that assess zoonotic potential of wildlife viruses (https://doi. 
org/10.1101/2020.02.25.965046 [preprint: not peer reviewed], 
https://doi.org/10.1101/2020.11.12.379917 [preprint: not peer 
reviewed]), generate priority targets for wildlife reservoir 
sampling (Becker et al. 2020, Babayan et al. 2018, Plowright 
et al. 2019), and help benchmark model performance related 
to these tasks. Beyond training and validation, link predic-
tion models built on these reconciled databases may be used 
to target future literature searches, shifting from systematic 
literature searches to a model-based approach to database 
updating. Increased collaboration between data collectors, 
data managers, and data scientists that leads to better data 
standardization and reconciliation is the only way to produc-
tively synthesize our knowledge of the global virome.

Acknowledgments
This work was supported by funding to the Viral Emergence 
Research Initiative consortium, including National Science 
Foundation grant no. BII 2021909 and a grant from the 
Institut de Valorisation des Données. The authors thank 
Noam Ross, Maya Wardeh, and many others for formative 
conversations about these data sets and for their tireless work 
making those data available to the research community.

Supplemental material
The four raw data sets and harmonized CLOVER data set 
can be obtained from the archived link https://zenodo.org/

record/4945274. Code used to generate the analyses and 
figures in this study can be found at https://github.com/
viralemergence/reconciliation.

References cited
Albery GF, Eskew EA, Ross N, Olival KJ. 2020. Predicting the global mam-

malian viral sharing network using phylogeography. Nature communi-
cations 11: 2260.

Babayan SA, Orton RJ, Streicker DG. 2018. Predicting reservoir hosts and 
arthropod vectors from evolutionary signatures in RNA virus genomes. 
Science 362: 577–580.

Becker DJ, Seifert SN, Carlson CJ. 2020. Beyond infection: Integrating com-
petence into reservoir host prediction. Trends in Ecology and Evolution 
35: 1062–1065.

Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, 
Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A. 2007. The delayed 
rise of present-day mammals. Nature 446: 507–512.

Boettiger C, Chamberlain S, Hart E, Ram K. 2015. Building software, build-
ing community: Lessons from the rOpenSci Project. Journal of Open 
Research Software 3: e8.

Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of 
mammals are there? Journal of Mammalogy 99: 1–14.

Carlson CJ, Zipfel CM, Garnier R, Bansal S. 2019. Global estimates of mam-
malian viral diversity accounting for host sharing. Nature Ecology and 
Evolution 3: 1070–1075.

Chamberlain SA, Szöcs E. 2013. taxize: Taxonomic search and retrieval in 
R. F1000Research 2: 191.

Colella JP, Stephens RB, Campbell ML, Kohli BA, Parsons DJ, Mclean BS. 
2020. The Open-Specimen Movement. BioScience 71: 405–414.

Dallas T. 2016. helminthR: an R interface to the London natural history 
museum’s host–parasite database. Ecography 39: 391–393.

Dallas TA, Han BA, Nunn CL, Park AW, Stephens PR, Drake JM. 2019. 
Host traits associated with species roles in parasite sharing networks. 
Oikos 128: 23–32.

Dallas T, Park AW, Drake JM. 2017. Predicting cryptic links in host–parasite 
networks. PLOS Computational Biology 13: e1005557.

Ezenwa VO, Price SA, Altizer S, Vitone ND, Cook KC. 2006. Host traits 
and parasite species richness in even and odd-toed hoofed mammals, 
Artiodactyla and Perissodactyla. Oikos 115: 526–536.

Fernández N, Guralnick R, Daniel Kissling W. 2019. A minimum set of 
information standards for essential biodiversity variables. Biodiversity 
Information Science and Standards 3: e35212.

Fritz SA, Bininda-Emonds ORP, Purvis A. 2009. Geographical variation 
in predictors of mammalian extinction risk: Big is bad, but only in the 
tropics. Ecology letters 12: 538–549.

Gibb R, Redding DW, Chin KQ, Donnelly CA, Blackburn TM, Newbold T, 
Jones KE. 2020. Zoonotic host diversity increases in human-dominated 
ecosystems. Nature 584: 398–402.

Gideon Informatics, Berger S. 2020. GIDEON Guide to Medically Important 
Bacteria. GIDEON Informatics.

Gilbert AT, et al. 2013. Deciphering serology to understand the ecology of 
infectious diseases in wildlife. EcoHealth 10: 298–313.

Guth S, Visher E, Boots M, Brook CE. 2019. Host phylogenetic distance 
drives trends in virus virulence and transmissibility across the ani-
mal–human interface. Philosophical Transactions of the Royal Society 
B 374: 20190296.

Han BA, Kramer AM, Drake JM. 2016. Global patterns of zoonotic disease 
in mammals. Trends in Parasitology 32: 565–577.

Han BA, Schmidt JP, Bowden SE, Drake JM. 2015. Rodent reservoirs of 
future zoonotic diseases. Proceedings of the National Academy of 
Sciences 112: 7039–7044.

Jetz W, et  al. 2019. Essential biodiversity variables for mapping and 
monitoring species populations. Nature Ecology and Evolution 3:  
539–551.

Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW, 
Doyle MM. 2020. Global shifts in mammalian population trends reveal 

biab080.indd   8 14-08-2021   08:33:18 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/advance-article/doi/10.1093/biosci/biab080/6353869 by U

. of Florida H
ealth Science C

enter Library user on 26 August 2021

https://zenodo.org/record/4945274
https://zenodo.org/record/4945274
https://github.com/viralemergence/reconciliation
https://github.com/viralemergence/reconciliation


Overview Articles

https://academic.oup.com/bioscience  XXXX XXXX / Vol. XX No. X • BioScience   9   

and predicts mammalian reservoirs. Proceedings of the Royal Society 
B 287: 20192882.

Washburne AD, Crowley DE, Becker DJ, Olival KJ, Taylor M, Munster VJ, 
Plowright RK. 2018. Taxonomic patterns in the zoonotic potential of 
mammalian viruses. PeerJ 6: e5979.

Wille M, Geoghegan JL, Holmes EC. 2021. How accurately can we assess 
zoonotic risk? PLOS Biology 19: e3001135.

Wyborn C, et  al. 2018. Understanding the impacts of research synthesis. 
Environmental Science and Policy 86: 72–84.

Rory Gibb (rory.j.gibb@gmail.com) is affiliated with the Centre for 
Mathematical Modelling of Infectious Diseases and with the Centre on 
Climate Change and Planetary Health, at the London School of Hygiene and 
Tropical Medicine, in London, England, in the United Kingdom. Gregory 
F. Albery is affiliated with the Department of Biology at Georgetown 
University, in Washington, DC, in the United States. Daniel J. Becker is 
affiliated with the Department of Biology at the University of Oklahoma, 
in Norman Oklahoma, in the United States. Liam Brierley is affiliated with 
the Department of Health Data Science at the University of Liverpool, in 
Liverpool, England, in the United Kingdom. Ryan Connor is affiliated with 
the National Center for Biotechnology Information, at the National Library 
of Medicine, in the National Institutes of Health, in Bethesda, Maryland, 
in the United States. Tad A. Dallas is affiliated with the Department of 
Biological Sciences at Louisiana State University, in Baton Rouge, Louisiana, 
in the United States. Evan A. Eskew is affiliated with the Department of 
Biology at Pacific Lutheran University, in Tacoma, Washington, in the 
United States. Maxwell J. Farrell is affiliated with the Department of Ecology 
and Evolutionary Biology at the University of Toronto, in Toronto, Ontario, 
Canada. Angela L. Rasmussen is affiliated with the Vaccine Infectious 
Disease Organization and International Vaccine Centre, at the University 
of Saskatchewan, in Saskatchewan, Saskatoon, Canada, and she and Colin 
J. Carlson (colin.carlson@georgetown.edu) are affiliated with the Center for 
Global Health Science and Security, at the Georgetown University Medical 
Center, at Georgetown University, in Washington, DC, in the United States. 
Sadie J. Ryan is affiliated with the Quantitative Disease Ecology and 
Conservation Lab, in the Department of Geography and with the Emerging 
Pathogens Institute at the University of Florida, in Gainesville, Florida, in 
the United States, and with the College of Life Sciences at the University of 
KwaZulu Natal, in Durban, South Africa. Amy Sweeny is affiliated with 
the Institute of Evolutionary Biology at the University of Edinburgh, in 
Edinburgh, Scotland, in the United Kingdom. Timothée Poisot is affiliated 
with the Département de Sciences Biologiques at the Université de Montréal, 
and with the Québec Centre for Biodiversity Sciences, both in Montréal, 
Québec, Canada. All of the authors are members of the Viral Emergence 
Research Initiative consortium, a global scientific collaboration to predict 
which viruses could infect humans, which animals host them, and where 
they could emerge.

key predictors of virus spillover risk. Proceedings of the Royal Society 
B 287: 20192736.

Lachish S, Murray KA. 2018. The certainty of uncertainty: Potential 
sources of bias and imprecision in disease ecology studies. Frontiers in 
Veterinary Science 5: 90.

Lindenfors P, Nunn CL, Jones KE, Cunningham AA, Sechrest W, Gittleman 
JL. 2007. Parasite species richness in carnivores: Effects of host body 
mass, latitude, geographical range and population density. Global 
Ecology and Biogeography 16: 496–509.

Lowndes JSS, Best BD, Scarborough C, Afflerbach JC, Frazier MR, O’Hara 
CC, Jiang N, Halpern BS. 2017. Our path to better science in less time 
using open data science tools. Nature Ecology and Evolution 1: 160.

Mollentze N, Streicker DG. 2020. Viral zoonotic risk is homogenous among 
taxonomic orders of mammalian and avian reservoir hosts. Proceedings 
of the National Academy of Sciences 117: 9423–9430.

Nunn CL, Altizer SM. 2005. The global mammal parasite database: 
An online resource for infectious disease records in wild primates. 
Evolutionary Anthropology 14: 1–2.

Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak 
P. 2017. Host and viral traits predict zoonotic spillover from mammals. 
Nature 546: 646–650.

Park AW. 2019. Phylogenetic aggregation increases zoonotic potential of 
mammalian viruses. Biology Letters 15: 20190668.

Pereira HM, et  al. 2013. Essential biodiversity variables. Science 339: 
277–278.

Plowright RK, Becker DJ, Crowley DE, Washburne AD, Huang T, Nameer 
PO, Gurley ES, Han BA. 2019. Prioritizing surveillance of Nipah virus 
in India. PLOS Neglected Tropical Diseases 13: e0007393.

Poelen JH, Simons JD, Mungall CJ. 2014. Global biotic interactions: An 
open infrastructure to share and analyze species-interaction data sets. 
Ecological Informatics 24: 148–159.

Poisot T, Baiser B, Dunne JA, Kéfi S, Massol F, Mouquet N, Romanuk TN, 
Stouffer DB, Wood SA, Gravel D. 2016. Mangal: Making ecological 
network analysis simple. Ecography 39: 384–390.

Schoch CL, et al. 2020. NCBI Taxonomy: A comprehensive update on cura-
tion, resources and tools. Database 2020: baaa062.

Shaw LP, Wang AD, Dylus D, Meier M, Pogacnik G, Dessimoz C, Balloux F. 
2020. The phylogenetic range of bacterial and viral pathogens of verte-
brates. Molecular Ecology 29: 3361–3379.

Shi M, et  al. 2018. The evolutionary history of vertebrate RNA viruses. 
Nature 556: 197–202.

Stephens PR, et  al. 2017. Global mammal parasite database, version 2.0. 
Ecology 98: 1476.

Wardeh M, Risley C, McIntyre MK, Setzkorn C, Baylis M 2015. Database of 
host–pathogen and related species interactions, and their global distri-
bution. Scientific Data 2: 150049.

Wardeh M, Sharkey KJ, Baylis M. 2020. Integration of shared-pathogen 
networks and machine learning reveals the key aspects of zoonoses 

biab080.indd   9 14-08-2021   08:33:18 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/advance-article/doi/10.1093/biosci/biab080/6353869 by U

. of Florida H
ealth Science C

enter Library user on 26 August 2021


