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Abstract. Understanding the factors responsible for structuring ecological communities is a central goal

in community ecology. Previous work has focused on determining the relative roles of two classes of

variables (e.g., spatial and environmental) on community composition. However, this approach may ignore

the disproportionate impact of variables within classes, and is often confounded by spatial autocorrelation

leading to collinearity among variables of different classes. Here, we combine pattern-based

metacommunity and machine learning analyses to characterize metacommunity structure of zooplankton

from lakes in the northeast United States and to identify environmental, spatial, and geographic covariates

associated with metacommunity structure. Analyses were performed for the entire metacommunity and

for three zooplankton subsets (cladocerans, copepods, and rotifers), as the variables associated with

community structure in these groups were hypothesized to differ. Species distributions of all subsets

adhered to an environmental, spatial, and/or geographic gradient, but differed in metacommunity pattern,

as copepod species distributions responded independently of one another, while the entire zooplankton

metacommunity, cladocerans, and rotifers replaced one another in discrete groups. While environmental

variables were nearly always the most important to metacommunity structure, the relative importance of

variables differed among zooplankton subsets, suggesting that zooplankton subsets differ in their

environmental tolerances and dispersal-limitation.
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INTRODUCTION

Identifying the mechanisms underlying species
distributions and community structure is a
central focus of community ecology (Hairston et
al. 1960, Soininen et al. 2007, De Meester 2011).
Two distinct explanations of community struc-
ture have emerged: niche assembly and dispersal
assembly. According to niche assembly, commu-
nity composition is controlled predominantly by
environmental forces, emphasizing the physio-
logical tolerances of species to environmental

conditions. By contrast, dispersal assembly holds
that community composition is limited by the
ability of species to reach new habitats, making
spatial (e.g., distance among sites) or geographic
variables (e.g., patch size, elevation, etc.) stronger
determinants of community composition than
environmental variables (Weiher et al. 2011). This
makes the assumption that variables relating to
patch size or distance among patches are directly
related to dispersal likelihood. Past studies
seeking to quantify the relative importance of
environmental and spatial factors have obtained

v www.esajournals.org 1 September 2014 v Volume 5(9) v Article 104



conflicting results (Cornell and Lawton 1992,
Pinel-Alloul et al. 1995, Cottenie 2005), possibly
because actual community assembly occurs
through a combination of niche and dispersal
processes (Mouillot 2007) or as a result of
variable choice or multicollinearity among pre-
dictors. Methods capable of accounting for
collinearity among variable sets are therefore
important in understanding the structure of
ecological communities.

Difficulties distinguishing factors responsible
for structuring ecological communities have been
a major impediment to our understanding of
community assembly, suggesting the need for
alternative analytical approaches to metacom-
munity analysis. Previous methods have argued
that mechanistic metacommunity models (i.e.,
species sorting, neutral dynamics, mass effects,
or patch dynamics; Leibold et al. 2004, Holyoak
et al. 2005) can be distinguished through the
partitioning of spatial and environmental vari-
ables, using the significance of the variance
partitions of environment and spatial variables
to be indicative of a metacommunity model.
Variance partitioning approaches may be insen-
sitive to autocorrelation among variable sets, and
are not typically used to analyze variance
explained from single variables, but from entire
classes of variables (Beisner et al. 2006). This may
obscure the relative roles of variable classes, since
one strongly associated variable could drive the
explained variance for an entire variable class. As
a result of these issues with the application of
variance partitioning to the study of community
composition, we do not attempt to distinguish
among different metacommunity models (e.g.,
neural dynamics), which are traditionally dis-
cerned using a variance partitioning framework
(Cottenie 2005).

Instead, we combine two analyses to deter-
mine how a metacommunity is structured, and
what variables are most associated with meta-
community structure in lake ecosytems. Lake
ecosystems offer an excellent opportunity for
studying metacommunity structure, as each lake
offers a bounded community with a set of
unambiguously measurable environmental attri-
butes (e.g., depth, pH). Community ecologists
have recognized that zooplankton communities
therefore represent an ideal study system for
examining the drivers of community structure,

leading to a rich body of literature (Cottenie et al.
2003, Havel and Shurin 2004, Cottenie and De
Meester 2005, Medley and Havel 2007). Despite
the amount of attention paid to these tractable
communities, conflicting reports exist on whether
geographic factors or environmental variables
(Cottenie 2005) are more important in determin-
ing community composition.

To address this conflict, we used the Elements
of Metacommunity Structure (EMS) framework
of Leibold and Mikkelson (2002) together with
regression tree analysis to determine drivers of
community structure and species distributions of
zooplankton of the Eastern United States. The
EMS framework employs three statistics that,
when taken together, can be used to distinguish
among metacommunity structures (Leibold and
Mikkelson 2002) (Fig. 1). The three statistics that
compose the EMS framework are coherence,
turnover, and boundary clumping (Table 1).
Coherence is the number of embedded absences
in a species range, turnover is the number of
times species replace one another across their
respective ranges (similar to the C-score in co-
occurrence analysis), and boundary clumping is
the tendency of species ranges to clump, or form
modules. These statistics together allow for the
classification of metacommunities as random,
checkerboard, or adhering to a structuring
gradient, with species responding independently
(Gleasonian metacommunity, named for botanist
H.A. Gleason; Gleason 1926) or as discrete
groups of species (Clementsian metacommunity,
named for ecologist Frederic Clements; Clements
1916). This approach allows for the classification
of metacommunities into ‘‘patterns’’ or ‘‘types’’,
but also provides a quantitative gradient (based
on reciprocal averaging) along which the meta-
community is structured. This gradient can then
be related to environmental, geographic, and
spatial variables. Here, we use boosted regres-
sion trees (BRT) (De’Ath 2007, Elith et al. 2008) to
relate the gradient along which communities are
structured to environmental, geographic, and
spatial variables. Boosted regression trees are
flexible to nonlinearities and collinearity inherent
in multivariate community data, in which envi-
ronment and geography are intrinsically linked.

In this article, we analyze data on zooplankton
species distributions among 139 lakes in a 43105
km2 area of the northeast United States (US EPA
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1990) to determine the relative influence of a

suite of environmental, geographic, and spatial

variables on zooplankton species distributions.

These data have been used for at least one other

study on zooplankton community assembly and
structure (Leibold et al. 2010). However, previous
studies have used ‘‘problematic’’ methods (see
Anderson et al. 2011 for a discussion of inferring
metacommunity dynamics from variance parti-
tioning), and focused on the impact of entire
classes of variables (e.g., spatial variables versus
environmental variables) rather than considering
the individual impact of each variable relative to
other variables. Further, previous work has
largely focused on the zooplankton community
as a whole (Cottenie et al. 2003), or focused on a
particular zooplankton subset (e.g., rotifers;
Fontaneto et al. 2006), but see Leibold et al.
(2010). However, zooplankton groups likely
differ in their responses to environmental and
geographic variables, and dispersal capability
(Havel and Shurin 2004). To address these issues,
we utilize the EMS analysis coupled with
boosted regression trees, to identify variables
most important to community structure of the
entire zooplankton metacommunity and taxo-
nomic subsets (e.g., rotifers), and to quantify the
relative importance of these variables to commu-
nity structure. Variables examined span three
classes, including environmental (e.g., water
chemistry variables), spatial (e.g., distance
among sites), and geographic (e.g., elevation,
lake size) variables. We hypothesized that zoo-
plankton subsets would differ in which variables
were important to community structure and the
relative importance of variables relative to others.
Further, given the dispersal capabilities of many
zooplankton taxa (Fontaneto et al. 2006), we

Fig. 1. The three-dimensional space created by the

three statistics used to determine metacommunity

structure (taken from Dallas 2014). Quasi-structures

proposed by Presley et al. (2010) (marked with a single

asterisk) and metacommunity structures unable to be

determined using the EMS analysis (Gleasonian and

random; double asterisk) are not considered in our

current framework. Instead, the EMS analysis can

distinguish among Clementsian (A), evenly spaced

gradients (B), nested subsets (C), and checkerboard (D)

structures.

Table 1. Idealized metacommunity structures and associated significance signs for the three attributes used to

identify the best fit pattern. Significance signs are based on the position of the calculated statistic relative to the

null distribution of the statistic, with ‘‘�’’ indicating a statistic less than the null distribution, ‘‘ns’’ indicating no

significant difference between empirical statistic and null statistic distribution, and ‘‘þ’’ indicating a statistic

larger than the null distribution. These attributes form the axes of a three-dimensional space depicted in Fig. 1.

An asterisk (*) indicates metacommunity patterns determined by asserting the null hypothesis, and therefore,

the EMS analysis may not be able to distinguish these metacommunity types.

Pattern Definition Coherence Turnover
Boundary
clumping

Random* Species ranges follow no detectable gradient ns þ; �; ns þ; �; ns
Checkerboard Species pairs have mutually exclusive distributions � þ; �; ns þ; �; ns
Nested subsets Species ranges form nested groups þ � þ; �; ns
Evenly spaced gradients Species ranges distributed evenly across gradient þ þ �
Gleasonian* Species ranges adhere to gradient, but do so

individualistically
þ þ ns

Clementsian Species ranges form groups, which replace each other
along gradient

þ þ þ
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hypothesized that environmental and geographic
variables would play a larger role than spatial
distances among sites.

METHODS

Data collection
Between 1984 and 1986, the United States

Environment Protection Agency conducted a
National Surface Water Survey in an effort to
document the biotic status of lakes in the United
States, specifically those that may be sensitive to
acidification. Here, we examined water chemistry
and zooplankton community data sampled
during the summer of 1986 as part of the Eastern
Lake Survey (Fig. 2), a smaller component of the
National Surface Water Survey (US EPA 1990).
Lakes were chosen using a systematic random
sample (Herlihy et al. 1991) from a subset of lakes
with acid neutralizing capacity (ANC) ,400 lg/
L, depth .1.5 m, and low nitrogen or phospho-
rous concentrations. Water chemistry variables
were measured following the methods of Mitch-
ell-Hall et al. (1989) from a sample taken just after
lake turnover near the deepest part of the
sampled lake with a 6.2 LVan Dorn acrylic bottle
filled from a depth of 1.5 m. Chlorophyll a was
determined spectrophotometrically following the
EPA Acidic Deposition Analytical Methods Man-

ual (US EPA 1987). Zooplankton were sampled
using an 80 lm mesh Wisconsin bucket net for
three vertical tows of the entire water column
(Tessier and Horwitz 1991). To limit the influence
of transient species, a species must have been
documented in more than one of the three
plankton tows to be considered present in the
lake. Further, species that occurred in only one
lake were removed from analysis, as they can
exert strong influences on coherence and bound-
ary clumping, potentially biasing results (Presley
et al. 2009, Keith et al. 2011).

Variable selection
Variables were selected a priori but informed

by previous studies on metacommunity structure
(Cottenie 2005, Leibold et al. 2010). Given the
breadth of variables measured in the EPA
sampling effort, we selected ten environmental
variables, seven geographic variables, and two
spatial variables for our analyses (Table 2).
Spatial variables were the first two vectors from
a principal coordinates analysis (PCoA) on the
distance matrix generated by determining the
geodesic distance between all sites (determined
using R package ape; Paradis et al. 2004). These
two vectors constituted 98.9% of the eigenvalues
for the distance matrix. Environmental variables
were all related to patch quality, while geograph-

Fig. 2. Geographic locations of lakes sampled by the EPA from 1984 to 1986 and used in the present analyses.
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ic variables were related to the physical aspects
of lakes. For instance, lake size, watershed area,
and the number of inlets all impact the potential
for zooplankton to move and/or successfully
colonize habitats. Therefore, physical variables
may relate to dispersal likelihood, but they are
also likely related to environmental parameters.

Elements of metacommunity structure analysis
Community matrices (site-by-species) of pres-

ence-absence data were assembled for each of
three major groups; rotifers (44 spp.), cladocerans
(29 spp.), and copepods (20 spp.). Analyses were
performed on each group separately and on the
community as a whole (93 total spp.). Within a
taxonomic group, lakes containing no species
occurrences were removed prior to analysis.
However, this occurred infrequently (one and
two lakes for rotifers and copepods, respectively)
and is unlikely to influence our overall conclu-
sions.

The EMS framework uses presence-absence
data to distinguish metacommunity pattern by
calculating three metrics; coherence, species
turnover, and range boundary clumping (Leibold
and Mikkelson 2002, Presley et al. 2010), which
form a three-dimensional space within which
different metacommunity patterns occupy differ-
ent regions (Table 1, Fig. 1). Matrices were first

ordinated via reciprocal averaging (Gauch 1982),
a technique that arranges sites with most similar
community composition and species with most
similar distributions closer together. This ordina-
tion differs slightly from other ordination tech-
niques, such as principal components analysis, in
that higher values (species presences in our
study) are concentrated along the matrix diago-
nal (Gauch 1982). The weights obtained from
reciprocal averaging represent a gradient along
which species distributions are structured, pro-
vided that species distributions are not random or
checkerboard. Coherence was measured by count-
ing the number of embedded absences in the
ordinated matrix and compared against the
number of embedded absences from 1000 ordi-
nated null matrices. Significance was determined
by comparing observed versus null embedded
absences using a z-test. Negative coherence
(more embedded absences than expected under
null model) indicates a checkerboard pattern, in
which species occurrences among sites are
mutually exclusive. Positive coherence indicates
that species ranges have fewer embedded ab-
sences than expected under null model simula-
tions. To qualify for further analysis, community
matrices must exhibit positive coherence (i.e.,
fewer embedded absences than null model
simulations).

Table 2. Summary statistics for the environmental and geographical variables from 139 lakes in the northeast

United States used in the boosted regression tree analysis.

Variable Units Mean (SE) Min Max

Environmental
Chlorophyll a lg L�1 4.99 (0.08) 0.35 132.30
Nitrate mg L�1 2.09 (0.34) 0.00 18.21
Ammonium mg L�1 2.15 (0.92) 0.00 25.50
Phosphorous lg L�1 9.64 (11.35) 0.00 90.00
DIC mg L�1 1.04 (0.09) 0.05 4.35
DOC mg L�1 4.08 (0.45) 0.40 12.42
Carbonate lg L�1 0.12 (0.00) 0.00 1.55
Potassium lg L�1 11.42 (4.40) 1.56 42.70
Turbidity Secchi depth (cm) 72.66 (3.08) 13.00 157.00
pH . . . 6.60 (0.08) 4.46 8.01
Runoff m/year 0.55 (0.00) 0.25 0.76

Geographic
Elevation m 295.70 (18.31) 1.50 791.00
Lake size ha 381.40 (20.95) 3.00 790.00
Inlets no. 0.96 (0.17) 0.00 8.00
Lake type . . . . . . . . . . . .
Watershed area ha 3086.02 (1.1e7) 13.00 81424.00
Lake volume 10e6 m3 475.20 (27.17) 31.00 1075.00

Spatial
PCoA vector 1 . . . 1.56 e-17 (0.01) �1.91 1.99
PCoA vector 2 . . . 2.07e-17 (0.01) �1.86 2.15
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Turnover was quantified by calculating the
number of times one species replaced another
between sites, after species distributions are
made completely coherent. Therefore, this does
not include gaps in species ranges in the turnover
metric; only instances where species replace one
another from site to site are considered. This
metric is compared to the distribution of turn-
over values obtained through 1000 ordinated null
simulations using a z-test. Low turnover is
indicative of nested subsets, whereas significant-
ly high turnover means that species replace one
another at the ends of their ranges more often
than expected by chance. This indicates that the
metacommunity can be structured as Clement-
sian, Gleasonian, or have evenly spaced gradi-
ents (Table 1; Leibold and Mikkelson 2002).
Boundary clumping was quantified using the
Morisita’s index, a measure of the dispersion of
species occurrences among sites (Morisita 1971).
A Morisita’s index (I ) of one indicates boundaries
are not clumped, while values greater than one (I
. 1.0) or less than one (I , 1.0) indicate clumped
or hyperdispersed boundaries, respectively. Sta-
tistical significance of the Morisita’s index was
determined using a chi-squared test.

It is important to note that our interpretation of
the EMS analysis differs slightly from that of
Leibold and Mikkelson (2002) and Presley et al.
(2010). In prior studies, the non-significance of
coherence (no difference in embedded absences
between calculated statistic and null distribution)
was interpreted as evidence that the community
was randomly structured. We believe this is to
mistakenly assert the null hypothesis. That is, we
assert that failure to detect an effect indicates that
the test is unable to distinguish positive from
negative coherence, and does not provide evi-
dence that the community is actually random.
Therefore, to interpret a non-significant result as
evidence for random metacommunity structure
is to commit the error of accepting the null
hypothesis. Accordingly, we do not consider two
patterns (Fig. 1) (random and Gleasonian) that
are part of the original formulation of Leibold
and Mikkelson (2002) to be discernible through
the EMS analysis (Dallas 2014).

The choice of null model is not unambiguous,
as many permutation algorithms are available,
each differing in their type I and type II error
properties (Gotelli 2000). In our study, observed

species richness per site was fixed (row totals
fixed), as lakes differ in their suitability and
richness may be contingent upon differences in
this suitability. Zooplankton species distributions
may be dispersal-limited at the geographic scale
of the current study (Shurin et al. 2009, De
Meester 2011). To incorporate this into the null
model, species occurrences at sites were deter-
mined using the marginal frequencies in the
observed community matrices as probabilities of
occurrence in the null matrices (Wright et al.
1997). In addition to biological realism, this null
model algorithm (fixed row – proportional
column) has desirable type I and II error
properties relative to most others (Gotelli and
Graves 1996, Gotelli 2000).

Boosted regression tree analysis
The EMS analysis provides insight into meta-

community patterns, but not into the variables
potentially responsible for creating the observed
pattern. Correlations with the values obtained
from reciprocal averaging can provide some
information (Presley and Willig 2009, Keith et
al. 2011), but don’t provide information about the
relative influence of individual variables when
considering a suite of potentially interrelated
factors. Regression tree analysis is a useful tool
for prediction and identification of relevant
predictor variables, but has only recently been
applied to ecological systems (De’Ath 2007, Elith
et al. 2008). Specifically, boosted regression trees
(BRT) bypass many of the issues with traditional
approaches, such as collinearity of predictor
variables, nonlinear relationships between pre-
dictors and response (Elith et al. 2008), or the
fallibility of commonly applied approaches like
variance partitioning (Gilbert and Bennett 2010).

‘‘Boosting’’ refers to the process whereby many
trees are created in order to extract general
‘‘weak’’ rules, which are then combined to
enhance predictive ability. The optimal number
of trees was determined using k-fold cross-
validation (k ¼ 10) to avoid overfitting. The
learning rate (l¼ 0.001), or shrinkage parameter,
determines the degree to which each new tree
contributes to the overall model. An interaction
depth of 2 was used in order to allow for two-
way variable interactions, thereby reducing the
effect of collinearity. Cross validation was also
used to determine the optimal number of trees
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(upper limit ¼ 20000 trees) before model perfor-
mance declined. The relative contribution (RC) of
each predictor variable was determined by
randomly permuting each predictor variable
and quantifying the reduction in model perfor-
mance, a method that is free of classical
assumptions about normality and equal variance
(Anderson 2001). Relative contribution estimates
were then based on the number of times a given
predictor variable was selected for splitting,
weighted by the degree the split improves model
performance. This metric was averaged across all
trees built in the model, and scaled between 0
(predictor had no contribution) to 100 (predictor
is very important).

The EMS analysis was performed using the
metacom package (Dallas 2013) in R version 2.15.1
(R Development Core Team 2013), which relies
on functions from the vegan package (Oksanen et
al. 2012). A significance level of a¼0.05 was used
for all elements of metacommunity structure.
BRT models were fit using R package gbm
(Ridgeway 2012).

RESULTS

Metacommunity structure
Zooplankton metacommunity and subcommu-

nity patterns, determined through the analysis of
coherence, range turnover and boundary clump-
ing, remained similarly structured regardless of
ordination axis (Table 3). The entire zooplankton
metacommunity, along with cladoceran and
rotifer metacommunities, exhibited a Clement-

sian structure, indicating that groups of species
responded to the gradient rather than each
species responding independently (Table 3, Fig.
3). Copepods, by contrast, adhered to what has
been previously called a Gleasonian structure
along both ordination axes. We interpret this
result to imply that the copepod metacommunity
is structured along a gradient representing
environment, space, and geography, but that we
are unable to discern how species replace one
another along the structuring gradient, apart
from the result that species replaced one another
more often than expected by chance. Concretely,
we are unable to distinguish the copepod
metacommunity as Gleasonian, but recognize
that species ranges are responding to a gradient
in an organized fashion.

Structuring mechanisms
Metacommunities differed in the relative con-

tributions (RC) of predictor variables to the
primary axis scores obtained by reciprocal
averaging (Fig. 4). The top three variables related
to the gradient structuring the entire zooplank-
ton metacommunity included a measure of
spatial distance (i.e., second PCoA vector) (RC
¼ 24.63), pH (RC¼ 16.46), and chlorophyll a (RC
¼ 8.70). Despite the importance of the two
variables representing spatial distance among
sites, environmental variables were most impor-
tant to the structure of the entire zooplankton
metacommunity (RCE ¼ 60.03). Geographic var-
iables were largely unimportant, accounting for
between 11% and 18% of the relative contribution

Table 3. Elements of metacommunity structure analysis for primary and secondary ordination axes. Coherence

was calculated by determining the number of embedded absences in the interaction matrix (Abs) and relating

this to a null distribution, with mean and standard deviation reported (Mean (SD)). The number of

replacements (Rep) and the mean and standard deviation of the turnover statistic (Mean (SD)) are divided by

10e3. Range clumping was determined by calculating Morisita’s index (I ).

Group

Coherence Turnover Clumping

Abs Mean (SD) p Rep Mean (SD) p I p

Primary axis
Entire 8135 9813 (110) ,0.0001 154 114 (15) 0.0084 1.92 ,0.0001
Cladocera 1688 2511 (75) ,0.0001 21 13 (3) 0.0037 1.59 0.0377
Copepod 985 1532 (63) ,0.0001 8 4 (1) ,0.0001 1.82 0.0517
Rotifer 3254 4138 (79) ,0.0001 27 14 (3) ,0.0001 2.37 ,0.0001

Secondary axis
Entire 7669 9850 (106) ,0.0001 156 84 (12) ,0.0001 2.34 ,0.0001
Cladocera 1599 2554 (77) ,0.0001 21 11 (2) ,0.0001 4.06 ,0.0001
Copepod 1252 1585 (67) ,0.0001 11 6 (2) 0.0038 0.86 0.3942
Rotifer 3313 4185 (81) ,0.0001 36 20 (4) ,0.0001 2.79 ,0.0001
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values. Environmental variables had the highest
summed relative contribution values, even when
considering geographic variables to be proxies
for dispersal likelihood. This is true for all
metacommunities apart from copepods, in which
spatial variables (RCS¼ 45.37) played a substan-
tial role.

Aside from spatial distances among sites, the
copepod metacommunity was structured by
phosphorus (RC ¼ 10.27), chlorophyll a (RC ¼
11.36), and turbidity (RC¼ 7.46). The cladoceran
metacommunity was structured largely by re-
source availability, as chlorophyll a exerted the
strongest effect (RC ¼ 25.05), followed by
dissolved organic carbon (DOC) (RC ¼ 11.89)
and spatial distance among sites (RC ¼ 17.22).
Rotifer communities were structured predomi-
nantly by pH (RC ¼ 42.68), dissolved inorganic
carbon (DIC) (RC ¼ 15.11), and spatial distance
among sites (RC ¼ 10.09).

DISCUSSION

The zooplankton metacommunity and all
subsets were significantly structured along a
gradient. The entire zooplankton, cladoceran,
and rotifer metacommunities were Clementsian,
as species ranges adhered to a gradient, and
formed discrete groups that replaced one another
along the gradient. We were unable to determine
the pattern that the copepod metacommunity
adhered to as a result of non-significant bound-
ary clumping corresponding to a small or null
effect, though the metacommunity was struc-
tured along a gradient as indicated by signifi-
cantly coherent species ranges, and higher
turnover than expected under our null model
conditions. The gradient responsible for structur-
ing zooplankton communities was largely envi-
ronmental, which supports the niche-assembly
paradigm. However, we recognize that spatial

Fig. 3. Zooplankton species distributions along a structuring gradient (i.e., the dominant ordination axis from

reciprocal averaging). Species ranges across sites are made entirely coherent (no gaps in a species range) for

visualization. The entire zooplankton community is shown in (A) with each taxonomic subset shaded to match

subset species distribution plots for copepods (B), cladocerans (C), and rotifers (D).
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distance among sites is not a direct measure of

dispersal, and therefore do not make further

claims about community assembly. However, our

use of spatial distance coupled with geographic

variables that are likely to impact dispersal and

colonization likelihood suggests that environ-

mental variables may be more important to the

distribution and composition of the entire zoo-

plankton metacommunity, rotifer and cladoceran

subsets, but not the copepod metacommunity. It

is possible that copepods are more dispersal-

limited than environmentally-limited, whereas

cladocerans are limited strongly by resource

availability and rotifers by pH. Taken together,

our analyses suggest that zooplankton metacom-

munities are structured largely by environmental

variables, and that species respond to environ-

mental variables in clumped groups, where

species may have similar physiological tolerances

to environmental variables, or may be endemic to

one geographic region. Leibold et al. (2010)

found environmental factors were most impor-

Fig. 4. The relative contributions, obtained through permutation tests of the BRT models, of geographical and

environmental variables structuring the zooplankton metacommunity and subcommunities (cladocerans,

copepods, and rotifers). Variables are divided into environmental (light grey), geographic (dark grey), and

spatial (black). Pie charts show the relative contributions of variables to metacommunity structure.
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tant in structuring daphniids, a finding mirrored
in our analysis of the cladoceran metacommun-
ity. However, the focus of Leibold et al. (2010)
was the incorporation of phylogeny and histor-
ical biogeography on species distributions. A
fruitful midpoint between the two approaches
would be to incorporate phylogenetic informa-
tion into the boosted regression analysis, either at
the community level, as we did here, or at the
individual species level, as Leibold et al. (2010)
did. It is worth noting that Leibold et al. (2010)
claimed that species distributions could be
conflicting, such that species would respond
individualistically across the gradient obtained
in the EMS analysis. This idea is supported in our
analyses for the copepod metacommunity.

The EMS framework has recently received
some criticism, following an evaluation of pat-
tern detection via null model analyses (Ulrich
and Gotelli 2013). However, this criticism evalu-
ates each of the metrics independently of one
another, rather than in concert. Further, despite
their critique, Ulrich and Gotelli (2013) endorse
the use of coherence (referred to as ‘‘EmAbs’’ in
their publication) and Morisita’s index, citing that
coherence exhibited good type I error and that
Morisita’s index exhibited good power at detect-
ing compartmentalized structures, provided that
an appropriate null model was used. Thus, while
it is possible that pattern detection in metacom-
munities is not best assessed using the EMS
framework, it currently represents one of the
only mechanistic approaches, and one of the few
approaches to use more than a single summary
statistic. Further, this Ulrich and Gotelli (2013)
critique would only influence the findings of the
EMS analysis, and would not discredit the BRT
analysis.

The BRT analysis suggests that variables
responsible for structuring zooplankton taxo-
nomic subsets are unique to the subset. For
instance, chlorophyll a was associated with the
cladoceran species ranges, but was relatively
unimportant to the rotifer metacommunity. This
suggests that cladoceran ranges may be struc-
tured by a resource gradient, as chlorophyll a can
be used as a proxy for total algal biomass, and
cladocerans feed predominantly on algae (Tai-
pale et al. 2008), whereas copepods are typically
omnivorous (Adrian and Frost 1993, Kulkarni et
al. 2013) and feed mainly on smaller particles,

including bacteria (DeMott 1982). This provides a
biological rationale for chlorophyll a structuring
cladoceran and, to a lesser extent, copepod
assemblages. Further, rotifers typically feed on
bacteria, and may serve as food items to some
copepods and cladocerans (Williamson 1987).
Aside from resource limitation, our analyses also
provide evidence that pH can drive species
distributions, as it has the highest relative
contribution value for both the entire zooplank-
ton metacommunity and for the rotifer meta-
community. The dominance of pH suggests that
zooplankton differ in their environmental toler-
ance ranges for pH, a finding noted elsewhere
(Holt et al. 2003), which has implications for
community composition under the threat of lake
acidification. Further, the impact of pH may also
include the impact of other variables, as pH is
often correlated with other water quality metrics
such as calcium (Ca), dissolved organic carbon
(DOC), and total organic phosphorus (Jeziorski
et al. 2012). The importance of DOC and pH to
zooplankton communities is supported by pre-
vious analyses in boreal shield lakes influenced
by acidification (Derry et al. 2009).

One qualification of this study concerns
geographic scale. Given the broad geographic
study area, environmental and spatial variables
are most likely linked through processes of
spatial structuring of geographic and environ-
mental lake variables (i.e., spatial autocorrela-
tion). Proximity to industrial centers, which have
a defined spatial structure in this system, may
contribute to the degree of nitrate deposition, pH,
and other water chemistry variables (Fenn et al.
2003). However, there are few ways to disentan-
gle these coupled factors, and the BRT analysis is
well suited for parsing collinear predictors. The
application of BRT analysis to multivariate
community data offers a way to deal with the
inherent messiness of community or ecosystem
scale data.

Determining the factors that shape species
distributions remains a core goal of community
ecology and biogeography (Holyoak et al. 2005).
The current study adds to a growing body of
literature concerning the mechanisms structuring
species distributions (Frisch et al. 2012, Heino et
al. 2012, Peres-Neto et al. 2012). Specifically, this
study offers a novel way to analyze community
data to address the relative impact of variables
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belonging to different classes. Assessment of the
relative impact of individual variables is impor-
tant, as is accounting for collinearity in predictor
variables, as previous studies may be confound-
ed by the effects of both of these issues.
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