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Species have been commonly hypothesized to have high population densities in geo-
graphic areas which correspond to either the centre of the species geographic range 
or climatic niche (abundant–centre hypothesis). However, there is mixed empirical 
support for this relationship, and little theoretical underpinning. We simulate a species 
spreading across a set of replicated artificial landscapes to examine the expected level 
of support for abundant–centre relationships in geographic and niche space. Species 
niche constraints were modeled as a single axis which was related directly to population 
growth rates. We found strong evidence for abundant–centre relationships when pop-
ulations follow deterministic growth, dispersal is high, environmental noise is absent 
and intraspecific competition is low. However, the incorporation of ecological realism 
reduced the detectability of abundant–centre relationships considerably. Our results 
suggest that even in carefully constructed artificial landscapes designed to demonstrate 
abundant–centre dynamics, the incorporation of small amounts of demographic sto-
chasticity, environmental heterogeneity or landscape structure can strongly influence 
the relationship between species population density and distance to species geographic 
range or niche centre. While some simulated relationships were of comparable strength 
to common empirical support for abundant–centre relationships, our results suggest 
that these relationships are expected to be fairly variable and weak.

Keywords: abundance, distance–abundance, distribution–abundance, geographic 
distribution, macroecology, niche

Introduction

According to the abundant–centre hypothesis, species should have higher population 
density in the centre of their geographic distribution (Brown 1984, Sagarin and Gaines 
2002). However, empirical support for this remains fairly low (Pironon et al. 2016, 
Dallas et al. 2017) (but see Waldock et al. 2019), as this hypothesis makes numer-
ous assumptions concerning the geographic distribution of a species. For instance, 
populations are assumed to be well connected throughout the geographic range, be at 
their carrying capacity and in equilibrium with the environment. These assumptions 
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are largely untenable (Sagarin et al. 2006, Dallas et al. 2017, 
Santini et al. 2019). However, it has been proposed that while 
species may not be most abundant in their geographic range 
centre, they may be most abundant in their niche centre 
(Martínez-Meyer  et  al. 2013). Interpreting the abundant–
centre hypothesis across the niche space (‘abundant–niche 
centre hypothesis’) provides a closer link to existing theory 
of the ecological niche (Maguire Jr 1973). However, fram-
ing the abundant–centre hypothesis in niche space does not 
address many of the abundant–centre assumptions. This 
version of the hypothesis focuses on the fundamental niche 
(Hutchinson 1957), however, niche is typically estimated 
from occurrence data (implicitly linking the species niche 
and geographic distribution; Pulliam 2000) and thus produc-
ing something closer to the realized niche (Soberón 2007). 
Yet, realized niches are expected to be a partial representation 
of the fundamental niche (Peterson et al. 2011) and can have 
holes (Blonder 2016). Further, population density is assumed 
to be equilibrial and unaffected by dispersal or competition 
(Pironon et al. 2016).

The core idea of the abundant–niche centre hypothesis is 
that the density of a species and the distance from the niche 
centre should be negatively related, such that species density 
should be lowest closest to the edge of the niche (Martínez-
Meyer et al. 2013). This makes intuitive sense, as those condi-
tions near the edge of the niche boundary represent the niche 
extremes for that species. Translating species performance 
curves into niche axes, it would be expected that population 
growth rates, fecundity or survival would be highest in the 
niche centre and lowest at the niche edge (Maguire Jr 1973, 
Sagarin and Gaines 2002, Pironon et al. 2018). Ultimately, 
this treats the niche not as a persistence boundary (Holt 
2009), but as a surface where more interior environments 
correspond to ‘better’ conditions for population growth. 
Further, the empirical support for this relationship is also 
quite low (Tuya et al. 2008, Dallas et al. 2017, Santini et al. 
2019), potentially because of the failure to estimate appro-
priate niche axes, the non-equilibrial nature of population 
dynamics or the multitude of other factors influencing popu-
lation density (e.g. competition, dispersal, predation).

It is potentially due to these factors that the abundant–
centre and abundant–niche centre hypotheses have received 
mixed support so far in natural systems. Understanding 
when and why we observe abundant–centre and abundant–
niche centre relationships (Martínez-Meyer  et  al. 2013, 
Waldock et al. 2019, Osorio-Olvera et al. 2020), and when 
we do not (Sagarin and Gaines 2002, Pironon et al. 2016, 
Dallas  et  al. 2017, Santini  et  al. 2019) is a pressing need. 
Presently, abundant–centre relationships are largely a collec-
tion of observational studies at different scales and encom-
passing a wide range of taxa, but without any clear consensus 
or synthetic understanding of the underlying cause (Sagarin 
and Gaines 2002, Pironon  et  al. 2016). Perhaps this focus 
on documenting abundant–centre relationships in natu-
ral systems has undercut the development and testing of 
the underlying theoretical framework. One possible way to 

explore the hypothetical mechanisms of the abundant–centre 
hypothesis is through spatially-explicit simulations of popu-
lation dynamics. One recent attempt to address this theo-
retical shortcoming used a deterministic model based on a 
shrew species in Mesoamerica to explore the relationship 
between density of a species and distance from a niche centre 
(Osorio-Olvera et al. 2019). The authors enforced a covari-
ance structure between niche axes by modeling population 
growth rate as a function of Mahalanobis distance in a ellip-
soidal niche structure, directly linking distance in niche space 
and population growth rates. Previously, Osorio-Olvera et al. 
(2019) found that incorporating Allee effects and dispersal 
into a deterministic model of a single species spreading across 
a constructed landscape could result in a failure to detect 
abundant–centre relationships.

Building on this, Holt (2019) demonstrate that niche 
asymmetry, spatial variation in density dependence and non-
linear environmental feedbacks can also strongly influence 
resulting abundant–centre relationships. Together, this sug-
gests that even when conditions are constructed to be quite 
favorable, abundant–centre relationships may be quite dif-
ficult to detect in natural systems. One of the larger poten-
tial reasons for this could be that demographic processes 
(e.g, survival, fecundity) can be completely unrelated to geo-
graphic range position or species niche limitations, or have 
opposite relationships to what would be expected from an 
abundant–centre relationship through population processes 
such as demographic compensation (Doak and Morris 2010, 
Villellas  et  al. 2015). Understanding the conditions where 
an abundant–centre relationship might manifest is a clear 
research need, and could help to explain the low levels of 
empirical support. In addition to the concerns raised by Holt 
(2019), we posit that at least two large classes of effects could 
further influence the detectability and strength of abundant–
centre relationships.

First, the assumption that all populations across a species 
range are at equilibrium is difficult to reconcile with our knowl-
edge of population dynamics in both natural (Lundberg et al. 
2000, Benincà et al. 2015) and experimental (Shorrocks 1970, 
Laakso et al. 2003) systems. Dynamic demographic processes 
may strongly influence abundant–centre relationships. For 
example, spatial synchrony in species population dynamics 
– caused by the underlying response of population growth 
rates to distance from the range centre – may lead to jointly 
fluctuating populations and resulting temporal change in the 
strength of abundant–centre relationships. Additionally, the 
data used to explore the abundant–centre relationships are 
often based on surveys from different time periods instead 
of simultaneous sampling (Pérez-Tris et al. 2000, Martínez-
Meyer et al. 2013, Dallas et al. 2017, Santini et al. 2019). 
While out of necessity, this practice makes the assumption 
that population densities are comparable across a set of geo-
graphic sites sampled under different local environmental 
conditions (commonly aggregate measures like annual mean 
temperature are used to define niche axes) and at different 
times (creating a clear issue for seasonally fluctuating species). 



3

Relatedly, deterministic models simulated for many timesteps 
will approach an equilibrial density across a landscape, which 
may inflate abundant–centre correlations from what would 
actually be seen over any realistic timescale.

Second, there are likely both landscape and species-level 
processes which influence the detectability and strength of 
abundant–centre relationships. For instance, the spatial dis-
tribution and autocorrelation of environmental conditions 
likely strongly constrains whether a geographic abundant–
centre relationship is observed for a given species. Further, 
species vary in terms of intraspecific competition and disper-
sal ability, which may strongly influence population demog-
raphy and abundant–centre support by placing constraints 
on maximum population density and the rate and variation 
within the spatial spread of a species, respectively.

To explore the influence of these factors, we created artifi-
cial landscapes for a single species to grow and spread within. 
To start, we assumed that the geographic centre of the land-
scape also corresponded to the niche centre (this is modi-
fied by the η parameter), that a single niche axis was directly 
proportional to population growth rate, and enforced the 
landscape to follow an abundant–centre gradient in terms of 
the distribution of population growth rates. We ran simula-
tions by varying a set of species-specific (intraspecific com-
petition, dispersal probability and distance) and landscape 
(spatial variation in environment and shape of the linear 
gradient in population growth rates) conditions. We explore 
the extent to which abundant–centre relationships are sensi-
tive to non-equilibrial population dynamics by incorporating 
demographic stochasticity into simulations of species spatial 
population dynamics, using both a deterministic and stochas-
tic Ricker model to examine spatial population dynamics. We 
evaluate the strength of the abundant–centre relationship by 
estimating the rank correlation between abundance per cell, 
and geographic and niche-centre distance, respectively. The 
strength of abundant–centre relationships for the stochas-
tic model approximate many of the correlation strengths 
from empirical studies (Tuya et al. 2008, Rivadeneira et al. 
2010, Baldanzi  et  al. 2013, Scrosati and Freeman 2019). 
However, the degree to which these relationships can be used 
to make predictions of species abundance given geographic 
or niche information remains unclear (Dallas  et  al. 2018). 
The incorporation of spatial population dynamic models 
which incorporate realistic ecological processes (e.g. com-
petition, dispersal variation, stochasticity) are essential for 
understanding the conditions required to observe abundant–
centre relationships in terms of either geographic or climatic  
niche space.

Methods

Constructing artificial landscapes

Artificial landscapes consisted of a 200 × 200 lattice, where 
each cell contained a population. The goal of constructing 
these landscapes was to explore the most simple case, where 

we could easily expect abundant–centre relationships to 
manifest. To this end, geographic and niche gradients cor-
responded directly to population growth rates, and the 
landscapes were formed so that niche and geographic gradi-
ents were identical, creating a 1:1 correspondence between 
geographic and niche space. Assuming this, combined with 
reasonable access to all sites (removing the influence of dis-
persal limitation), we create a situation where the fundamen-
tal and realized niche are equivalent, and where population 
growth rates are directly proportional to geographic and  
niche position.

To construct the landscape, we assumed an initial abun-
dance of 20 individuals located in a 21 × 21 square centred 
on the landscape. From the central point, we modeled popu-
lation growth rate as a decreasing linear function in x and 
y dimensions, creating nested squares of population growth 
rates with the largest values in the centre of the landscape. 
Population growth rates (R) varied between 0 and 2, where 
values less than 1 correspond to decreasing population sizes 
and greater than 1 correspond to increasing populations. 
This value of R encompasses a realistic range of population 
growth rates, and does not come close to producing oscil-
latory dynamics or dynamic phenomena observed in the  
logistic map.

Under abundant–centre assumptions, populations towards 
the geographic or niche centre would have larger values of R. 
In our constructed landscapes, we placed the largest R values 
in the middle of the landscape, with population growth rates 
decreasing towards landscape margins with step size β at a 
decay rate of 0.2, which means each step of size β away from 
the centre of the landscape results in a population growth 
rate reduction of 0.2, until a minimum value was reached 
(minimum R was set to 0). The artificial landscapes were large 
enough such that inhospitable habitat was always included, 
so no odd boundary behavior was observed, as dispersal off 
the grid was impossible. This creates a flexible approach to 
construct landscapes with different potential species range 
sizes, but that strictly adhere to the assumptions of the  
abundant–centre hypothesis.

To add some realistic spatially autocorrelated environ-
mental variation, we superimposed a Gaussian random field 
on the artificial growth matrix (Fig. 1) using the R package 
gstat (Pebesma 2004). The random field was generated with 
range parameter (ω) set to 10, which controls the degree of 
spatial autocorrelation, generating ecologically realistic spa-
tial landscapes. We varied the relative role of this autocorre-
lated variation and the artificial growth rate matrix using the 
parameter η (Supplementary material Appendix 1 Fig. A2), 
which represents spatial heterogeneity in population growth 
rates due to variation in habitat structure, composition, 
resource distribution and biotic interactions. Even more sim-
ply, this spatial variation in population growth rates would 
just correspond to spatial variation in the dominant niche 
axis (i.e. the environment is not perfectly spatially autocor-
related). If η is set to 0, there is no spatially-autocorrelated 
environmental variation added. When η is equal to 1, the role 
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of the spatially-autocorrelated environmental variation is the 
same as the artificial growth rate matrix.

Species dispersal may influence spatial synchrony and the 
spatial distribution of individuals (Paradis et al. 1999) par-
tially independent of population growth rates (i.e. through 
source–sink dynamics). Dispersal was implemented by vary-
ing both dispersal probability and dispersal distance (Table 1). 
Dispersal probability Pd was modeled as a binomial variable 
determining the total number of individuals from any popu-
lation that would disperse at least one cell in each timestep. 
Dispersal kernel shape was modeled using a negative expo-
nential dispersal kernel, whose shape was determined by a 
negative exponential parameter, controlling the steepness of 
the exponential decline in probability with increasing dis-
persal rate (γ; Table 1). Each individual dispersed in x and 
y directions of the landscape independently following the 
negative exponential dispersal kernel (δi = e−γ), where i in 
the number of cells in either x or y dimensions and i > 0. In 

order to constrain the maximum possible dispersal distance 
an individual could go, we impose a limit d, corresponding 
to the maximum dispersal distance. This essentially truncates 
the negative exponential dispersal kernel at its low probability 
tail. This value was set at 20 cells for all simulations, which 
corresponds to 10% of the total size of artificial landscape 
in either direction (see Supplementary material Appendix 
1 Fig. A3 for more information on dispersal kernel shape). 
However, the probability of any individual moving 20 cells 
is incredibly small, given the negative exponential dispersal 
kernel. This creates dispersal dynamics where Pd determines 
the number of dispersing individuals (all of which will travel 
at least 1 cell away), d constrains the overall distance any dis-
persing individual might travel, and γ determines the shape 
of the dispersal kernel.

Species population dynamics

Each cell of the artificial landscape contained a population, 
which is connected by immigration and emigration to neigh-
boring habitat patches. We considered population dynam-
ics within each cell to be determined by a discrete single 
species Ricker model (Eq. 1), where population size in the 
next timestep (Nt+1) is determined by the population size at 
time t (Nt) and the per capita population growth rate R, dis-
counted by the effects of intraspecific competition (αNt). The 
Ricker model enforces non-overlapping generations, mean-
ing that competition constrains population abundance on  
generational time.

N N Ret t
Nt

+
−

1 =
α 	 (1)

To this deterministic framework, we included demographic 
stochasticity by treating both the number of offspring 

Figure 1. An example of a constructed landscape, where colors correspond to population growth rates, clearly linking the species niche 
requirements along a single simple axis and the species geographic distribution. Populations of 20 individuals were distributed centrally in 
the landscape (in 441 cells) and allowed to spread for 500 generations. The deterministic dynamics (upper panel) match the simple land-
scape structure well, and demonstrate that an abundant–centre relationship should be observed under these conditions. However, the sto-
chastic simulations (lower panel) show that even a small amount of demographic stochasticity can influence the spatial distribution of 
abundance quite strongly.

Table 1. Parameter definitions and ranges used in the spatial Ricker 
model describing species dispersal characteristics and landscape 
structure. These values are meant to encompass a wide range of spe-
cies and conditions, spanning from low to high intraspecific compe-
tition, low to high dispersal probability, short to long tail dispersal 
kernels, from steep gradients (where only the centre shows positive 
growth rates) to less steep gradients (where almost the entire land-
scape can show positive growth rates) and from no to high environ-
mental noise that shifts the niche centre substantially with respect to 
the geographic centre (Supplementary material Appendix 1 Fig. A1–
A5). Parameters were not changed through time in the simulations.

Parameter Definition Range

α Intraspecific competition 0.005–0.1
Pd Dispersal probability 0.0001–0.1
γ Dispersal kernel shape 0.25–2.5
β Shape of linear growth rate 

gradient (step size)
1–10

η Environmental noise weight added 
to landscape

0–6
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produced by each adult (R) and offspring survival as random 
variables. Specifically, the number of offspring per adult was 
modeled as a Poisson random variable with mean Nt × R. 
However, only a portion of these offspring survive, and the 
survival of offspring to generation t + 1 was modeled as a 
binomial random variable with probability proportional to 
the density-dependent adult effects on offspring; Bin(Nt+1, 
exp(−Nt × α)). This corresponds to the Poisson Ricker model 
as described and analyzed in Melbourne and Hastings (2008, 
2009), Dallas  et  al. (2019). We provide more conceptual 
detail on the influence of intraspecific competition α and 
population growth rates Rn on population dynamics in the 
deterministic (Supplementary material Appendix 1 Fig. A4) 
and stochastic model formulations (Supplementary mate-
rial Appendix 1 Fig. A5) in the Supplementary materials 
Appendix 1.

The underlying Ricker model is the same for deterministic 
and stochastic approaches, with stochasticity introduced by 
allowing the production and survival of offspring to be ran-
dom variables. This realistic process results in an integer-val-
ued population size at any time Nt. This stochastic model has 
been used to explore variability in spatial spread (Melbourne 
and Hastings 2009) and the effects of competition and disper-
sal on maintaining interspecies range boundaries (Dallas et al. 
2019). Previously, an expanded set of Ricker models was fit to 
experimental populations of flour beetles, finding that even 
in controlled situations, multiple forms of stochasticity influ-
enced population dynamics (Melbourne and Hastings 2008). 
For simplicity, we only incorporate demographic stochastic-
ity here, but note that environmental stochasticity, stochastic 
sex ratios and the existence of age or stage structured birth–
death processes could further influence population dynamics 
(Melbourne and Hastings 2008).

Model simulations

We simulated spatial abundance dynamics using the deter-
ministic and stochastic Ricker models on artificial landscapes 
for 500 generations. This period was chosen to avoid tran-
sient dynamics and allow sufficient time for the stabilization 
of species spatial abundance distributions, which typically 
occurred around 250 generations (Supplementary mate-
rial Appendix 1 Fig. A19–A24). In the main text, we report 
the relationships after 50 generations, but also examine how 
the relationships change at 250 and 500 generations in the 
Supplementary material Appendix 1. The relationships stabi-
lized after 300 timesteps (Supplementary material Appendix 
1 Fig. A7–A14), and there was no appreciable change across 
all timepoints examined (50, 250 and 500 generations). 
Using both deterministic and stochastic implementations of 
the Ricker model across simulated landscapes, we thoroughly 
test how abundant–centre relationships are influenced by 
step size (β), dispersal probability (Pd), dispersal rate (γ), 
degree of environmental noise (η) and species intraspecific 
competitive ability (α). See Table 1 for parameter definitions, 
default values and ranges examined. These parameter ranges 

represent a broad spectrum, putatively capturing or exceed-
ing what would be seen in natural systems.

We sampled the parameter space of these five parameters 
10 000 times using latin hypercube sampling using the lhs R 
package (Carnell 2019), allowing us to more fully explore the 
parameter space. In the Supplementary material Appendix 
1, we also report results for simulations where all other 
parameter values were fixed except a focal parameter, where 
we explored a gradient of values to see the effect of a single 
parameter independent of other parameters. The results of 
both approaches are qualitatively similar (Supplementary 
material Appendix 1 Fig. A15–A17).

We calculated Spearman’s rank correlations of population 
abundance in each cell to 1) the Euclidean distance between 
the geographic range centre (which corresponds to the area 
of highest population growth rate), and 2) the difference of 
population growth rates from the maximum. This first rela-
tionship addresses the abundant centre relationship in terms 
of distance from the geographic range centre of the species. 
The second relationship is a simplified way to address dis-
tance from niche centre, making the implicit assumption 
that the highest value population growth rate corresponds to 
the centre of the niche. We further assume that this niche 
axis is directly proportional to population growth rate. We 
explore if the method used to quantify distance from geo-
graphic range or climatic niche centre influences the over-
all results, measuring distance as Mahalanobis distance in 
the Supplementary material Appendix 1, finding no appre-
ciable differences between distance measures, as the two are 
strongly correlated (see Supplementary material Appendix 1 
or Dallas et al. 2018).

All simulation and analytical code was written in R 
(<www.r-project.org>) and is available on figshare (Dallas 
and Santini 2020).

Results

Abundant–centre relationships in geographic space

The abundant–centre hypothesis was originally conceptual-
ized in geographic space. We found relatively weak evidence 
for a geographic abundant–centre relationship after 50 gen-
erations for both deterministic (abundant–centre correlation; 
mean ± SD = −0.50 ± 0.27) and stochastic (abundant–cen-
tre correlation; mean ± SD = −0.31 ± 0.23) models given 
the amount of simplifying assumptions made (Fig. 2–4). 
While the overall strength of abundant–centre relationships 
decreased when demographic stochasticity was included, 
model parameters influenced both deterministic and stochas-
tic model formulations proportionally.

Increasing the spatial variation in environmental condi-
tions (η; Fig. 3) reduced support for abundant–centre rela-
tionships in geographic space in both deterministic (ρ = 0.71) 
and stochastic (ρ = 0.50) models. Similarly, decreasing the 
‘steepness’ of the growth rate gradient (β; Fig. 4) reduced 
abundant–centre support for deterministic (ρ = 0.20) and 
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stochastic (ρ = 0.23) models. Dispersal kernel shape (‘dis-
persal rate’, γ) and dispersal probability did not appear to 
strongly influence abundant–centre patterns (Fig. 5), espe-
cially when compared to the effect of incorporating demo-
graphic stochasticity.

Abundant–centre relationships in niche space

Niche distance was quantified as the difference in population 
growth rates from the maximum. This value was related to 
species density for all occupied cells, as cells with the highest 
population growth rates should attain the highest densities. 
We found this was especially true in the deterministic model 
(abundant–centre correlation mean ± SD = −0.96 ± 0.03), 
owing to the assumption of a perfectly measured one-dimen-
sional niche gradient that captures population growth rates 
(Fig. 2–4). The relationships estimated in niche space for the 
deterministic model were consistently greater than what has 
been observed in natural populations, due to the simplifying 
assumptions of the simulations. Abundant–centre relation-
ships for the determinstic model in niche space were com-
pletely insensitive to environmental noise (Fig. 3), rate of 

change in population growth rates (i.e. step size; Fig. 4), and 
dispersal dynamics (Fig. 5).

Introducing demographic stochasticity – modeling the 
number of offspring for each individual as a Poisson dis-
tribution random variable – consistently produced weaker 
abundant–centre relationships (abundant–centre correla-
tion mean ± SD = −0.54 ± 0.19) relative to the deterministic 
model. In the stochastic model, the abundant–centre rela-
tionship was strongly influenced by intraspecific competition 
(α; Fig. 2; ρ = 0.81), but only weakly influenced by spatial 
variation in environmental conditions (η; Fig. 3; ρ = 0.16) 
and the ‘steepness’ of the growth rate gradient (β; Fig. 4; 
ρ = 0.15).

The strength of abundant–centre relationships may 
change with time, as population dynamics reach equilibrium 
or become synchronous through shared response to environ-
ment or dispersal processes. We find that the deterministic 
model demonstrates a smooth transition to the long-term 
stable abundant–centre relationship slope across a range of 
parameter values, while the inclusion of demographic sto-
chasticity causes the abundant–centre relationship slope to 
fluctuate much more strongly in geographic (Supplementary 

Figure 2. Abundant–centre relationships – quantified using Spearman’s rank correlations – in geographic space (top row) and niche space 
(bottom row) and in a deterministic model (left column) and a stochastic model (right column). Abundant centre relationships in geo-
graphic space were especially susceptible to intraspecific competition (α), though incorporating a small degree of stochasticity caused intra-
specific competition to strongly affect evidence for abundant centre relationships in geographic and niche space. Smoothed splines are 
plotted to show the general trends.
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material Appendix 1 Fig. A19–A22) and climatic niche 
(Supplementary material Appendix 1 Fig. A23–A26) space.

Discussion

Using a combination of deterministic and stochastic model 
simulations with population dynamics based on the Ricker 
model, we demonstrated the sensitivity of abundant–centre 
and abundant-niche centre relationships to demographic 
stochasticity, landscape structure and species-specific param-
eters. We artificially constructed landscapes with a linearly 
decaying population growth rate with the highest value in 
the centre of the species geographic range, and calculated the 
difference from the maximum population growth rate as a 
measure of niche distance. In the absence of any deviation 
from this gradient – and when species dynamics were mod-
eled as deterministic – abundant–centre and abundant-niche 
centre relationships were commonly observed and were quite 
strong (Fig. 2–4). However, this treats the niche as directly 
proportional to population growth rate; a strong assumption. 
This is perhaps why abundant–centre relationships detected 
in the deterministic model tend to be much stronger than 

typically observed in natural systems (Martínez-Meyer et al. 
2013, Pironon et al. 2016, Dallas et al. 2017, Santini et al. 
2019). But species population dynamics do not take place 
on a perfectly structured linear environmental gradient, in 
the absence of environmental variation, with homogeneously 
distributed biotic interactions, and deterministic population 
dynamics. The incorporation of demographic stochasticity 
strongly reduced support for abundant–centre and abun-
dant–niche centre relationships, suggesting that incorpo-
rating a certain degree of ecological realism can negate an 
otherwise perfectly designed abundant–centre landscape.

Apart from demographic stochasticity, aspects of spe-
cies ecology strongly influenced the degree of support for 
abundant–centre and abundant–niche centre relationships. 
Species with strong density-dependence in their demographic 
rates – imposed through intraspecific competition here – had 
reduced abundant–centre and abundant–niche centre rela-
tionships in the stochastic model. Dispersal probability and 
dispersal kernel shape weakly influence abundant–centre 
relationships, with steeper exponential dispersal kernels and 
larger dispersal probabilities reduced abundant–centre sup-
port. Finally, the spatial distribution of species demographic 
rates is critical to abundant–centre support, as the strongest 

Figure 3. A realistic amount of environmental variation (η) – overlaid on the artificial relationship imposed between species geographic 
location, niche limits and rate of population growth – reduced evidence for abundant centre relationships strongly in geographic space. 
Abundant centre relationships – quantified as Spearman’s rank correlations – in terms of niche position were relatively unaffected by this 
variation, but were sensitive to very small amounts of demographic stochasticity (lower right panel). Smoothed splines are plotted to show 
the general trends.
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abundant–centre evidence occurs when the structuring niche 
axis – which relates directly to species demographic rates – is 
spatially autocorrelated. This conflates the species niche with 
the corresponding geographic distribution (Pulliam 2000), 
which is why recently abundant–centre relationships have 
been re-defined in climatic niche space (Martínez-Meyer et al. 
2013). Even in climatic niche space, the spatial distribution 
and density of environmental conditions can strongly influ-
ence abundant–niche centre relationships, and the implied 
relationship between climatic suitability and species density 
may be a gross oversimplification (Van Couwenberghe et al. 
2013, Dallas and Hastings 2018). A better integration with 
existing ideas from metapopulation biology, niche theory and 
macroecology may clarify the relative roles of environmental 
heterogeneity and species ecology on potential abundant–
centre and abundant–niche centre relationships.

Here we have shown that the theoretical support for the 
theory is expected to be fairly low in semi-realistic settings, 
dependent on the level of demographic stochasticity, the 
structure of the landscape and the relationship between niche 
axes and species demographic rates. However, the empirical 
support is expected to be even lower. First, several approaches 
exist to estimate the niche of a species and distance from 
centroid or edges (Dallas  et  al. 2017, Soberon  et  al. 2018, 

Santini et al. 2019, Osorio-Olvera et al. 2020). Second, all 
these approaches rely on the proper estimation of species’ 
niche axes (Synes and Osborne 2011, Fourcade et al. 2018), 
and the direct relationship between species niche axes and 
species demographic rates. A failure in any of these two can 
already undermine the estimated relationship. Third, spe-
cies abundance estimates are rare in the literature, can be 
obtained from heterogeneous methods, and those used in 
macroecological modeling are normally collected opportu-
nistically and thus suffer of known biases (Santini et al. 2018, 
Soberon et al. 2018). If the abundant–centre relationship is 
weak and close to zero, an incomplete, heterogeneus, and 
biased sample can easily flatten or reverse the estimated rela-
tionship. As such, assuming the relationship exists, its empiri-
cal support is expected to be absent or extremely weak on 
average, and show strong negative or positive correlations by 
chance, which may result in publication biases.

Our results support previous findings incorporating eco-
logical realism into a deterministic model of abundant–centre 
dynamics (Holt 2019, Osorio-Olvera et al. 2019), but per-
haps with a different overall conclusion. (Osorio-Olvera et al. 
2019) developed a simulation model, finding similar difficulty 
in detecting abundant–centre relationships at realistic times-
cales or when incorporating ecologically realistic population 

Figure 4. The rate of change in population growth rates across the artificial landscapes (β) reduced evidence for abundant centre relation-
ships – quantified as Spearman’s rank correlations – in geographic space for both deterministic and stochastic model formulations. In the 
deterministic model, an abundant–centre in niche space is inveitable as a function of the simulation design. Smoothed splines are plotted 
to show the general trends.
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processes (e.g. Allee effects), but claimed to have found gen-
eral support for abundant–centre relationships. Despite the 
strong relationships we document here when conditions are 
perfect for abundant–centre relationships to be maintained, 
we find small perturbations in parameter estimates, and the 
incorporation of demographic stochasticity strongly reduce 
the artificially-imposed abundant–centre. Based on these 
results, we conclude that abundant–centre relationships tend 
to be weak even in simulations designed to demonstrate the 
phenomenon (e.g. a single, simplified, perfectly estimated 
niche axis directly proportional to population growth rates), 
and therefore empirical support for the hypothesis is expected 
to be rare at best.

However, there are aspects of our simulation framework 
which may fail to capture the reality of natural systems. For 
instance, the spatial distribution of population growth rates 
follows the niche gradient linearly in the absence of environ-
mental noise, creating an artificial link between the species 
niche and corresponding geographic distribution (Pulliam 
2000). The use of more realistic niche structures and the 
incorporation of more than one niche axis are likely to fur-
ther reduce support for strong abundant–centre and abun-
dant–niche centre relationships. Further, this model can be 
extended to examine the sensitivity of species spatial popu-
lation dynamics to other forms of stochasticity, different 

dispersal kernels, competing species or natural enemies. One 
clear example is the incorporation of environmental sto-
chasticity, as most natural systems have temporally varying 
climatic conditions. Incorporating this temporal scale into 
macroecological studies is an interesting next step, as support 
for macroecological relationships may depend on temporal 
scale, and environmental variability may alter niche centroid 
and distance estimates.

The clear difficulty in detecting abundant–centre relation-
ships highlights the role of species life history and landscape 
structure on the spatial distribution of species abundance. 
The predictions made by our model simulations may be 
generally testable in observational data by carefully consid-
ering the structure of the niche in n-dimensional space and 
species-specific attributes related to dispersal and intraspecific 
competition. Abundant–centre relationships observed in our 
simulations with a single niche axis, a single species and many 
simplifying assumptions resulted in estimated correlation 
coefficients comparable to many empirical studies (Martínez-
Meyer et al. 2013, Pironon et al. 2016, Dallas et al. 2017, 
Osorio-Olvera et al. 2020). This is striking, as natural systems 
are likely far more complex than our simulated landscapes, 
as it is likely that species demographic rates are not sim-
ply controlled by a single niche axis. Given the simplifying 
assumptions of our simulations, the correlation coefficients 

Figure 5. The joint effects of dispersal probability (Pd; x-axis) and dispersal kernel shape parameter (γ) on abundant–centre relationship 
strength (color scale) in geographic space (top row) and niche space (bottom row) for both the deterministic (left column) and stochastic 
(right column) model formulations. All relationships were negative on average, and dispersal probability and distance did not appear to 
strongly influence resulting abundant–centre patterns in our simulations.
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estimated here can be seen as an upper bound of what can be 
realistically estimated in empirical case studies. While data 
quality and availability are constant concerns (Conde et al. 
2019), exploring species variation in abundant–centre sup-
port may provide an idea of the range of correlation coef-
ficients attainable in empirical systems relative to simplified 
simulation exercises such as this. Large databases of species 
densities (Santini  et  al. 2018), occurrences (Sullivan  et  al. 
2009, Telenius 2011) and traits (Maitner  et  al. 2018) can 
be used to explore the sensitivity of abundant–centre and 
abundant–niche centre relationships to species traits and 
geographic structure (Dallas  et  al. 2020, Osorio-Olvera   
et al. 2020).

Despite this, the low levels of support for abundant–cen-
tre relationships from both observational (Pironon  et  al. 
2016, Dallas et al. 2017, Santini et al. 2018) and theoretical 
(Osorio-Olvera et al. 2019) studies suggests that the abun-
dant–centre hypothesis cannot be used for the prediction of 
species densities. Further, the failure to detect abundant–cen-
tre relationships may not be because of small methodological 
or measurement differences between studies (Soberon et al. 
2018), but simply because species spatial population dynam-
ics at large scales do not follow from such simple predictions. 
Further conceptual refinement of abundant–centre ideas, 
and a better integration of population and community level 
theory, can help clarify the role of abundant–centre relation-
ships in natural systems.
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