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Understanding the role of biotic interactions in shaping natural communities is
a long-standing challenge in ecology. It is particularly pertinent to parasite
communities sharing the same host communities and individuals, as the inter-
actions among parasites—both competition and facilitation—may have far-
reaching implications for parasite transmission and evolution. Aggregated
parasite burdens may suggest that infected host individuals are either
more prone to infection, or that infection by a parasite species facilitates
another, leading to a positive parasite–parasite interaction. However, parasite
species may also compete for host resources, leading to the prediction that
parasite–parasite associations would be generally negative, especially when
parasite species infect the same host tissue, competing for both resources
and space. We examine the presence and strength of parasite associations
using hierarchical joint species distribution models fitted to data on resident
parasite communities sampled on over 1300 small mammal individuals
across 22 species and their resident parasite communities. On average, we
detected more positive associations between infecting parasite species than
negative, with the most negative associations occurring when two parasite
species infected the same host tissue, suggesting that parasite species associ-
ations may be quantifiable from observational data. Overall, our findings
suggest that parasite community prediction at the level of the individual
host is possible, and that parasite species associations may be detectable in
complex multi-species communities, generating many hypotheses concerning
the effect of host community changes on parasite community composition,
parasite competitionwithin infected hosts, and the drivers of parasite commu-
nity assembly and structure.
1. Introduction
Parasite species tend to infect multiple host species [1–4], and the specificity of
parasite species has been intensively studied [5,6], providing insight into the
host trait [7] and phylogenetic [8–12] relationships that promote differential
host species utilization. However, substantially less research has been performed
to understand the distribution of parasite species on individuals in the host com-
munity [13]. Coinfection at the individual host level is quite common [14], as a
subset of particular individuals tend to harbour themajority of internal and exter-
nal parasite species [15]. Aggregated parasite burdens suggest that infected host
individuals are either far more prone to infection or that parasite species are
potentially facilitative, which would occur if the infection of the host individual
by one parasite enhances transmission of other parasite species [4,16]. This
would lead to positive parasite–parasite associations [17,18]. However, parasite
species may also compete for host resources (resource-mediated interaction) or
through differential regulation of host immune response (immune-mediated
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interaction). Parasite competition for host resources would
suggest that parasite–parasite associations would generally
be negative [19], especially when parasite species infect the
same host tissue, competing for both resources and space
[20]. Immune-mediated interactions are more nuanced. In a
sequential infection scenario, immunosuppression of the host
by first arriving parasite may facilitate establishment and
replication of later arriving parasites [21]. However, a cross-
reactive immune responses elicited by the first parasite
influence has the potential to suppress the success of later
arriving parasites [22]. In theory, the intensity of within-host
interactions is expected to be stronger between closely related
parasites due to, for example, overlap in resource use and simi-
larity in the elicited immune recognition profiles [23,24].
Regardless of the mechanismmediating within-host dynamics
of parasites, the sequence and timing of infections may be a
critical determinant of the outcome [20]. Understanding how
parasite species form interactive communities within infected
host individuals has significant epidemiological [25] and
evolutionary [23] implications.

Previous work at the individual host scale has focused on
the influence of host behaviour [26], geographical location
[15,27] and traits [28] to understand why some individuals,
typically of a single host species, are infected and some are
not. However, the processes underlying differential parasite
burdens among host individuals may depend on coinfecting
parasite species [7]. By examining the entire coinfecting para-
site community (i.e. the infracommunity), it may be possible
to gain further insight into how host traits, geographical influ-
ences, and associations among coinfecting parasite species
contribute to coinfection differences. Perhaps the strongest evi-
dence for parasite–parasite associations within infected hosts
has come from manipulative experiments of natural popu-
lations of host species infected by two potentially interacting
parasites [16,29], as this approach is capable of disentangling
correlated exposure and transmission from parasite–parasite
association [30]. However, a number of field studies have
examined changes in parasite infection intensity to understand
within-host parasite interactions [3,31]. Extensions of this
work into multi-species host and parasite assemblages would
become logistically untenable experimentally, but under-
standing how complex interactions among parasite species
shape communities is an important issue in disease ecology
[32]. Further, approaches that consider the influence of host
traits, geographical and seasonal dynamics may provide
further insight into the structure of parasite communities and
associations across space and in shifting climate conditions.

If we consider host individuals as islands [33], which para-
sitic species occupy and obtain resources from, then it follows
that parasitic species may interact with one another [31,34].
A prevailing idea in ecology is that more similar species
should interact more strongly [35,36] through shared demand
of resources and shared habitats. The importance of species
interactions and competition in structuring free-living com-
munities has been acknowledged for decades [37–39], while
assessment of how similar associations shape parasite commu-
nities has lagged considerably behind. For parasitic species,
the habitat is the host, such that the overlap between two para-
sitic species in the assemblages of host species they infect is a
measure of functional overlap in habitat utilization. This
suggests that parasite species that often occupy the same
location within or on an infected host individual are predicted
to interact more strongly [31]. This can be mediated by a
number of factors. For instance, competition for space in the
host intestine may lead to stronger negative species associ-
ations for intestinal parasites [3]. However, parasite species
associations may also be mediated through the lens of the
host immune system [21,40], as the host response to infection
by one parasite can influence transmission success of other
parasite species through the effects of immunodepression, or
the balance between host resources and regulation of Th1
and Th2 arms of the host immune response [41]. The recent
advent of joint species distribution modelling [42] provides
opportunities to model the distribution of parasite commu-
nities among host individuals and species (see [43] for an
example in a single host species), potentially providing insight
into parasite interactions and host utilization patterns [44].

Predicting parasite community composition and detecting
parasite associations within infected host individuals are chal-
lenging ecological questions. Inherent difficulties exist due to
the logistics of parasite community data collection, issues of
accounting for both host traits and geographical variables,
and lack of appropriate statistical modelling frameworks [44].
However, the ability to predict parasite community compo-
sition is a pressing need, as host distributions are shifting in
response to climate [45], resulting in the formation of novel
host and parasite communities [46]. Further, determining the
extent to which parasite species form interactive communities
is still unknown [31]. Here, we disentangle the effects of host
traits and habitat covariates using a joint species modelling
framework, allowing the examination of parasite associations
after accounting for individual host variation, host species,
seasonal effects and site-level variation.We use data frompara-
site occurrence records from 65 parasitic species inhabiting
over 1300 host individuals across 22 small mammal host
species in the Sonoran desert. Parasite species found infecting
the stomach and cecum tended to interact more negatively,
suggesting a potential role for parasite competition. However,
parasite associations were generally positive, suggesting that
unmeasured host trait variation, geographical variation in
transmission or host distribution, or correlated transmission
and infection processes may promote apparently facilitatory
associations among many parasite species, despite competing
for host resources.
2. Methods
(a) Parasite communities of Sonoran desert small

mammals
Small mammal and parasite data (available from [47]) were
collected as part of the Sevilleta Long-Term Ecological Research
project, located in central New Mexico. The data used here are
from 1992 to 1997, and represent 1830 parasitized individuals of
23 host species across three families (Cricetidae, Heteromyidae
and Sciuridae). Sampling design and mammal processing proto-
cols are reported elsewhere [47]. Each site contained two
sampling webs each consisting of 144 kill traps. During each
sampling event, traps were set and checked for three trap nights.

Internal and external parasiteswere examined bynecropsy [48],
including host coat, stomach, intestines, body cavity and faeces.
Parasites included coccidians (Eucoccidiorida), acanthocephalans
(Moniliformida), tapeworms (Cyclophyllidea), nematodes (Ascari-
dida,Oxyurida, Rhabditida, Spirurida, Strongylida andTrichurida)
and arthropods (Siphonaptera, Phthiraptera andDiptera), resulting
in a total of 65 parasite species. However, we did not consider
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parasite species that were only found in host faeces in our main
analyses, as these parasite species (33% of the species examined)
may infect any part of the host gastrointestinal tract. The inclusion
of these parasite species and associated host records does not
substantially change our findings (see electronic supplementary
material). After removing these parasites and the associated host
individuals where only these parasite species occurred, a total of
1347 individual hosts of 22 different species and their associated
parasite communities remained.

Host traits and geographical location could jointly influence
host susceptibility and parasite transmission (e.g. [7]). As part of
the data collection, several geographical (year, site, season) and
host trait (host sex and species) data were collected. There were a
total of six sites, spanning three distinct habitat types (i.e. grass-
land, larrea and woodland) that were sampled across three
seasons (early summer, late summer and autumn).

(b) Hierarchical modelling of species communities
framework

While the majority of evidence for parasite–parasite associations
comes from manipulative studies [29,49], the advent of species
distribution models which leverage community-scale data may
provide a way to utilize observational data to predict parasite
community composition and detect parasite–parasite associ-
ations. Joint species distribution models extend single species
distribution models by leveraging data on entire ecological com-
munities and their responses to environmental variation and to
each other [50,51]. Here, we apply the hierarchical modelling of
species communities (HMSC) approach [51], which allows one
to incorporate study designs with multiple hierarchical levels,
species traits and phylogenetic relationships. When compared
with a large set of other single and joint species distribution
models, HMSC had the highest model performance of any
method, especially for communities with a large proportion of
rare species [42]. We used this approach to characterize how
the structure of parasite communities varies in space, time and
among host species.

As a response matrix (Y matrix [51]), we used the presence–
absences of 43 parasite species scored on 1347 host individuals. As
fixed effects (X matrix [51]), we included the sex (male or female)
of the host individual. As community-level random effects that
relate to spatial and temporal variation, we included the year of
the study (six levels), the study site (six levels), and the season of
sampling (three levels). As community-level random effects that
relate tohost traits,we include thehost species (22 levels). Toexamine
parasite-to-parasite associations among individual hosts, we also
included the host individual (1347 levels) as a community-level
random effects. As species traits (T matrix [51]), we included the
range of host tissues each parasite was found (i.e. cecum, coat,
small intestine or stomach), effectively measuring tissue specificity
of each parasite species. The inclusion of parasite species only
found in host faeces into themodel is provided in the electronic sup-
plementary material. Lastly, we compared parasite species
associations estimated by this fullmodel (measuring residual associ-
ations) to a model with host individual as a random effect, but
excludingother randomeffects aswell asthe fixedeffects (measuring
raw associations). This is more similar to traditional correlational
approaches at estimating parasite associations [44], and the differ-
ences between estimated parasite associations could be suggestive
of the importanceof considering the randomeffectsdiscussedabove.

We fittedmodelsby running fourMCMCchainswith100 × thin
iterations used for burn-in and 200 × thin iterations for the actual
sampling, where we varied thinning (thin = 1, 10, 100,…) until the
results converged. The model was cross-validated using fivefold
cross validation, in which the 1347 sampling units were randomly
allocated into five equally sized folds. Model performance was
assessed using Tjur’s R2, area under the receiver operating
characteristic (AUC), and root-mean-squared error (RMSE). Tjur’s
R2 measures the difference in predicted probabilities of occurrence
and probability of absence. AUC captures the ability of the model
to rank occurrences correctly. RMSE measures the squared differ-
ence between estimated occurrence and true species occurrence.

(c) Determinants of community structure and parasite–
parasite associations

Here, we were interested in assessing both the determinants of
community structure, and the nature of parasite–parasite associ-
ations within host individuals. First, to quantify determinants of
community structure, we performed a variance partitioning
among the fixed and random effects included in the model.
To address the relative differences in the effect of host species
and other covariates on parasite communities, we compared
the proportions of variance attributed to each effect as a function
of the host tissue which the parasite infects.

Second, we characterized parasite–parasite associations
through variance–covariance matrices (Ω [51]) defined for each
of the five community-level random effects included at the
model, which is standardized to a correlation matrix with values
bounded between−1 and 1. Among these, we were especially
interested at the host individual level, as that potentially relates
to ecological interactions among the parasite species. We visual-
ized the parasite-to-parasite associations with more than 75%
and 90% posterior support for either positive or negative inter-
action. For each possible combination of infection site, we
calculated the mean and variance for each combination of host
tissues infected (e.g. the mean and variance of parasite–parasite
associations of those parasites infecting the host stomach com-
pared to ectoparasitic species). We would expect that if parasite
species interact through direct competition for resources (e.g.
space), host tissues in closer proximity should have more negative
species associations. On the other hand, positive pairwise associ-
ations between parasite species could be indicative of facilitation
or unmeasured host variation.
3. Results
(a) Host–parasite interactions in the Sonoran desert
A total of 1347 host individuals were sampled for internal and
external parasites (table 1; electronic supplementary material,
table S4). The number of parasite occurrences varied across
host species, as did the specificity of parasite species (figure 1).
There were nearly equal numbers of internal and external para-
site species, though parasites found in host stomach were fairly
rare (figure 1).Weused thedominant host tissue a givenparasite
infects as a parasite trait in ourmodel.However, apart fromecto-
parasite species, parasite species were sometimes found in
multiple parts of the gastrointestinal tract (electronic sup-
plementary material, figure S1).

(b) Model performance
Parasite species responded differentially to geographical (year,
site, season) and host trait (host species and sex) variables
(figure 2), though host species commonly explained the most
variation in infection at the individual level. Despite the
variation in the importance of fixed and random effects, model
performance—based on fivefold cross validation—was
generally high when predicting species occurrence probabi-
lity when model performance was quantified using AUC
(AU̅C= 0.82, σAUC = 0.09), Tjur’s R2 (Tjur’̅s R2 = 0.09, σTjur’s R2 =
0.08) or RMSE (RM̅SE= 0.11, σRMSE = 0.09). Measures of model



Table 1. The number of host individuals sampled for parasite species at each of the six habitats and three habitat types (grassland, larrea and woodland) for
each of host species. One host species, Peromyscus difficilis, had no recorded non-fecal parasites, and was therefore omitted from the main text analyses. Two of
the sites (Five Points and Rio Salado) contain both grassland and larrea habitat types.

host species

grassland larrea woodland

Five Points Rio Salado Five Points Rio Salado Sepultrua Two-Twenty-Two total

Ammospermophilus interpres 0 0 0 0 2 0 2

Chaetodipus intermedius 0 0 0 0 7 53 60

Dipodomys merriami 9 106 316 236 0 104 771

Dipodomys ordi 102 201 1 25 0 0 329

Dipodomys spectabilis 75 0 68 5 0 1 149

Eutamias dorsalis 0 0 0 0 0 7 7

Eutamias quadrivittatus 0 0 0 0 20 0 20

Neotoma albigula 1 101 8 31 29 35 205

Neotoma micropus 2 0 5 1 0 0 8

Onychomys arenicola 34 6 34 6 0 0 80

Onychomys leucogaster 0 64 0 32 0 0 96

Perognathus flavus 1 94 2 21 0 8 126

Perognathus flavescens 125 1 41 36 16 38 257

Peromyscus boylii 0 0 0 0 6 7 13

Peromyscus difficilis 0 0 0 0 1 1 2

Peromyscus eremicus 0 1 7 2 0 0 10

Peromyscus leucopus 2 35 0 40 0 4 81

Peromyscus maniculatus 0 3 0 0 0 0 3

Peromyscus truei 7 22 1 34 163 13 240

Reithrodontomys megalotis 3 18 5 28 1 0 55

Reithrodontomys montanus 3 2 1 10 0 0 16

Sigmodon hispidus 0 1 0 2 0 0 3

Spermophilus spilosoma 15 7 1 2 0 0 25

total 146 389 290 307 108 107 1347
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performance were strongly positively related (electronic sup-
plementary material, figure S2), suggesting that our measures
are capturingmodelperformance ina similarmanner. In theelec-
tronic supplementarymaterial,we examinehoweachof the fixed
and random effects influence model performance, providing
support for the use of theHMSC framework and the importance
of the inclusion of random effects—particularly information on
host species—to model performance (see electronic supplemen-
tarymaterial, section ‘Model structure and randomeffects’). That
is,model performancewas the highestwhen random levelswere
included in themodel fitting, andwhenspecies associationswere
used in model predictions.

The importance of host species was consistent across the
different host tissue groups a parasite could infect, suggesting
that host species influenced parasite occurrence roughly the
same regardless of the host tissue infected (figure 2), a value
closely tied to parasite life-history and transmission mode.
Further, when random effects were considered individually,
the largest improvement in model performance with the
addition of one random effect was achieved by including infor-
mation on host species (see electronic supplementary material,
table S2). While the inclusion of an individual-level random
effect did not increase model performance (electronic
supplementary material, table S1), including information on
the habitat, season and host characteristics improved model
performance (see electronic supplementary material, table
S1). Further, model performance (AUC and Tjur’s R2 values)
showed no strong variation as a function of dominant host
tissue infected by parasite species, though model performance
was reduced for parasite species that infected few host species
or were found on few host individuals (figure 3).

(c) Parasite–parasite associations as function of tissue
infected

After controlling for host trait (i.e. host species and sex),
parasite trait (i.e. host tissues infected) and geographical (i.e.
site, season, year) differences, the residual variance–covariance
matrix (Ω) captures the potential associations between parasite
species. This matrix is standardized to a correlation matrix to
ensure values are bounded between− 1 and 1. Parasite associ-
ations with substantial support tended to bemuchmore sparse
in the model considering the random effects of site, season,
year and host species included relative to a model only consid-
ering host individual as a random effect (figures 4 and 5).
The effect of the random effects becomes especially clear for
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Figure 1. Parasite occurrence records on Sonoran desert small mammals. The top bar identifies each parasite species (columns) by the host tissue they infect (caecum in purple;
ectoparasites in blue; small intestine in green; stomach in yellow). Cells of the matrix are coloured based on the log number of times a given parasite was found on a given host
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the estimation of positive associations, where the model only
incorporating an individual random effect estimated 116 posi-
tive parasite–parasite associations, while controlling for the
effects of site, season, year and host species yielded an esti-
mated 26 positive parasite–parasite associations. Meanwhile,
numbers of negative associationswere slightlymore conserved
between models, with the model incorporating random effects
estimating 16 negative parasite–parasite associations com-
pared with the 46 estimated when only considering the
individual-level random effect (figure 4).

We also examined whether these associations varied as a
function of which host tissue a parasite species was found to
most commonly infect. We found generally positive associ-
ations, suggestive of potentially facilitatory relationships
between coinfecting parasite species (figure 5). However, these
relationships were generally weak. In an attempt to estimate
potential parasite species which co-occur more (or less) often
than expected, we used two posterior support thresholds (75%
and 90%). Here, the 90% threshold is more conservative, but
still provides evidence for some parasite associations (figure 5),
and both thresholds suggested that parasite species infecting
the same tissue may interact more negatively (figure 5).
4. Discussion
Evenwith a relatively small number of host trait covariates and
coarse geographical information, joint species distribution
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models were able to leverage data on coinfecting parasite
species to predict parasite communities at the individual host
scale. This suggests that individual-scale infection patterns
may be predictable even with limited data, and that predictive
accuracy will likely only increase with more detailed life-
history information of individual hosts (e.g. host body size,
home range, etc.). The variation in the relative importance of
geography and host traits suggests that shifts in host demogra-
phy and habitat quality may differentially affect host–parasite
relationships. On average, the most important variable in pre-
dicting parasite community composition among individual
hosts was host species, suggesting that host specificity is
important in predicting parasite community composition. By
incorporating the effect of sampling site, season and year, we
account for variation in potential spatial or temporal niche
partitioning, which would result in a lack of parasite infection
not as a function of host specificity, but simply as a result of
limited encounter [52,53]. However, the importance of host
species could relate to host species level variation in suscepti-
bility, or be related to unmeasured host trait variation or
co-evolutionary relationships between host and parasite
species [12,54]. It also suggests that changes in host species rela-
tive abundance or community composition would be likely to
change parasite community composition, potentially more so
than climatic seasonality or habitat quality. After controlling
for the effects of host traits and habitat variation, we found
evidence that parasite species infecting the host stomach and
cecum tended to be more negatively associated than parasite
species infecting other host tissues. Together, we demonstrate
the utility of joint species distributionmodels to understanding
and predicting parasite communities of individual hosts, and
identify how the strength and sign of parasite associations
changes with parasite location on the host individual.

While joint species distribution models tended to perform
best when more parasite occurrence records were available
and the observed host range was small, model performance
was not substantially reduced for generalist or rare species.
This suggests that leveraging information on the resident
parasite communities may provide insight into the distri-
butions of these parasite species which are typically more
difficult to predict (especially at the scale of the host individ-
ual). Apart from the prediction of parasite distributions, we
examined parasite associations among coinfecting parasite
species, finding evidence for both positive and negative
associations, dependent on host tissue infected. That is, para-
site associations tended to be slightly positive, suggestive of
facilitatory associations, but parasite species coinfecting the
stomach were strongly negatively associated. This suggests
the possibility of parasite competition for space or resources,
potentially modulated through the host immune response
[4,55–57]. That is, different timing in infection may result in
the infection by one parasite species resulting in increased
host immune response, which may prevent the successful
transmission of subsequent parasite species. For instance, hel-
minth parasites may suppress host immune function [58],
potentially promoting subsequent infections by other parasite
species. Meanwhile the generally slightly positive associations
suggest that correlated exposure (e.g. parasites are aggregated
in the environment, so encounter of parasite species is not
independent) or unmeasured host trait variation (e.g. host
range size) may affect encounter and transmission of these
parasite species [59,60]. While these parasite associations
must be treated more as hypotheses than as certainties, we
offer a novel way to examine parasite–parasite associations,
an inherently difficult problem using cross-sectional observa-
tional data [44]. Relating parasite associations to differences
in parasite traits, transmission modes, evolutionary relation-
ships or host community overlap may provide insight into
the processes that shape parasite communities within host
individuals and species.

Parasite associations are typically examined in simple com-
munities and through manipulative experiments [16,29,61].
That is, parasite infection is assessed, one parasite species is
manipulated and then the resulting changes to the other para-
site species is assessed [49,62]. Associated parasites would
respond to the availability of host resources by increasing in
abundance. While these experiments are incredibly important
for understanding parasite associations in infected host indi-
viduals, the use of joint species distribution models provides
additional evidence for parasite associations, and extends cur-
rent approaches to understanding parasite associations [44]
and the predictability of naturally formed parasite communi-
ties [7]. First, the approach does not require experimentation,
andmodels can be used to identify potentially associated para-
site species to provide a good starting point for experimental
studies that would not be able to address the full complexity
of these communities. Second, the approach can assess poten-
tial associations for entire parasite communities, which more
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Figure 5. Mean parasite–parasite associations as a function of host tissue infected for both 75% (a) and 90% (b) posterior probability support. The majority of host
tissue pairs had overall positive associations, suggestive of potentially facilitatory associations through correlated exposure or transmission, while parasite species
coinfecting the stomach had strong negative interactions, suggesting a potential role for parasite competition in resource limited host tissues. Zero-valued associ-
ations were not considered when calculating the mean association strength. (Online version in colour.)
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closely resembles the reality of host–parasite associations, as
host individuals are commonly infected by numerous parasitic
species. Lastly, joint species distribution models do not only
assess parasite associations, but gauge how host traits and
geographical covariates relate to parasite occurrences, and pre-
dict parasite community composition. Previous studies have
argued that correlational approaches are unable to estimate
parasite associations [44]. We provide a putative explanation
for this failure; parasite associations are conditional on covari-
ates related to geography, season and host traits (figure 4).
Assessing how parasite associations change across relevant
ecological and trait gradients is possible using these
approaches, while potentially intractable experimentally.
While host individuals are analogous to islands in some
ways [33], there are several differences which make predicting
parasite distributions and associations difficult, necessitating
further experimentation and integration ofmanipulative exper-
iments and computational approaches (e.g. joint species
distribution models) [43]. For one, while some free-living
species may modify the occupied habitat, parasitic species
nearly universally alter the occupied habitat through the
modulation of the host immune response [56,57]. This makes
the order of parasite arrival important to subsequent coinfec-
tion dynamics [63,64], analogous to a priority effect commonly
observed in free-living communities. While we have demon-
strated parasite–parasite associations using presence–absence
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data, parasite–parasite associations are perhaps more likely to
result not in reduced colonization, but in reduced abundance of
parasites within infected host individuals (i.e. infection inten-
sity). Applying similar techniques as used here to parasite
infection intensity will further help elucidate how parasite
associations influence parasite community composition (occur-
rence of parasite species) and structure (relative abundance
of parasite species). The integration of manipulative exper-
iments and computational approaches could provide model
validation and a synthetic view of parasite associations in
multi-parasite communities, identify key host traits promoting
coinfection [65,66], and disentangle correlated coinfection from
parasite associations [30].

Understanding what controls parasite species distributions
among host individuals and species is a longstanding research
area in disease ecology and parasitology [32]. More generally,
the role of competition relative to environment and geo-
graphical space in structuring ecological communities is a
long-standing ecological question [67]. We present the results
of a modelling approach that allows for the prediction of para-
site communities of host individuals [43], a scale which is
controlled not only by host traits and geographical covariates,
but by stochasticity in encounter and infection rates [31]. This
stochasticity in encounter and infection rates has led research-
ers to claim that parasite assemblages are non-equilibrial and
random [68]. The predictability we have observed at the level
of host species [7] and host individual (figure 3) suggests that
parasite communities may be predictable assemblages. With
respect to host condition, negative associations between para-
site species may reduce overall burden of parasite species
through parasite competition, creating a testable hypothesis
concerning the effects of parasite diversity on the cost of infec-
tion. Predictive models based on host traits and geographical
covariates may provide insight into parasite spillover to
humans or livestock [69,70] and changes in parasite infection
with shifting land use or host trait distributions [71], and pro-
vide insight into the complex interactions between host and
parasite species [1,72].
Data accessibility. Data and R code is available on figshare at https://doi.
org/10.6084/m9.figshare.6865247. When using the Sevilleta host–
parasite data, cite the original source [47].
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