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and the mammal community database Thibault et al. (2011). While authors

should cite the original data sources, we also provide data used in the analyses

and analytic code.
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Abstract

A recent comment from Knouft (2018) has suggested that our original article1

(Dallas, Decker, and Hastings 2017) was an "inappropriate application of biodiversity2

data". Here, we affirm our results, and address the more general point about3

biodiversity data use.4
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5

A recent paper suggested that the relationship between a species geographic range6

or climatic niche center was largely unrelated to population density (Dallas et al.,7

2017), a prevailing biogeographical pattern that is at the foundation of many8

ecological hypotheses (Sagarin & Gaines, 2002). Knouft (2018) is concerned that9

the data used for assessing distance-abundance relationships in fish species – which10

accounted for less than 5% of examined species – suffered from biases and were11

therefore unsuitable for use, suggesting that distance-abundance relationships may12

apply for freshwater taxa. The main concerns of Knouft (2018) were that the data13

used 1) may include non-native or stocked fish species, 2) do not reflect the actual14

range of the species, 3) represent pseudoreplicated samples.15

16

First, fish species stocked to support recreational fisheries certainly pose an issue17

for detecting distance-abundance relationships, in much the same way differential18

fishing pressure could drive down certain populations. However, the claim that19

baitfish introductions and stocking are the reason for the lack of distance-abundance20

relationships observed is premature, as there are many causal pathways to reach21

our conclusions, and we also observed a pronounced lack of support in species not22

typically subjected to stocking or take. Incorporating species traits and land-use23

changes into the study of species abundance patterns represents an interesting24

future step, as it allows researchers to determine the relative effects of climate and25

other factors (e.g., habitat fragmentation, human-mediated transport, etc.).26
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27

Second, Knouft (2018) suggest that the narrow sampling of fish species could result28

in the lack of observed distance-abundance relationships. This is a concern, which29

we attempted to address (see supplement of Dallas et al. (2017)) by quantifying30

geographic range and climatic niche centroids using species occurrence data from31

the Global Biodiversity Information Facility, relating species geographic range size32

and occurrence number to distance-abundance relationship slope to determine the33

potential effect of sampling or geographical bias, and acquiring data from BirdLife34

International on migratory status to examine the effect of bird migratory status35

on distance-abundance relationships. Geographic range estimation of populations36

embedded in a metapopulation, where much of the range of inhospitable, is a clear37

concern – and a point raised in Knouft & Page (2011) – but calculating range both38

in terms of sampled populations and GBIF records accounts for this effect as well39

as possible.40

41

Lastly, Knouft (2018) expressed concern that we used multiple samples of population42

density from the same lakes. This potentially stems from a lack of clarity in the43

original article. When sites were repeatedly sampled, we took the mean value44

for each unique latitude and longitude coordinate. This procedure was used for45

all data sources. However, we recognize that multiple samples can come from46

the same lake, but have slightly different geographic coordinates. We explore47

this in the supplement, where we compare aggregation of samples by rounding48

geographic coordinates to quantify the number of unique localities. We show that49
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1) pseudo-replication did not take place, and 2) the number of species for which50

sufficient data were available did not change substantially when aggregating data51

at coarser scales.52

53

Ecological theory built on a small number of observational points – like many54

macroecological relationships – should be evaluated with the best possible data.55

Our effort combined data from governmental surveys, citizen science efforts, published56

literature estimates, and museum specimens to provide the most comprehensive57

test of distance-abundance relationships. While we agree with Knouft (2018) that58

biodiversity data needs to be used appropriately, we also believe it needs to be59

used. We have made every possible effort to programmatically access and clean60

data, combine multiple data streams of different quality, and provide all code61

to reproduce our original results (https://doi.org/10.6084/m9.figshare.5023232.v2)62

and the results of this supplemental analysis (https://doi.org/10.6084/m9.figshare.6444608).63

This will hopefully enable researchers to revisit these analyses once more or better64

quality data are available. In summary, we believe our original findings are robust65

and represent a good example of how biodiversity data from multiple sources can66

be combined to provide thorough tests of existing ecological theory.67
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Removing potentially pseudo-replication109

In the main text of this comment, we address the claim of non-independence in110

species density estimates due to the same locality being sampled multiple times.111

This was, in part, our mistake for not being clear in the methods section of the112

original article. Here, we examine the effect of spatial resolution and multiple113

sampling to estimate how many species still satisfy our criteria of at least 10114

unique sampled sites. Code to reproduce the main text analyses is available115

at https://doi.org/10.6084/m9.figshare.5023232.v2, and the supplemental116

analyses contained here at https://doi.org/10.6084/m9.figshare.6444608.117
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Table S1: The effect of binning multiple abundance measures by geographic118

coordinates. The total number of occurrences (n) represents locations that have119

been sampled multiple times, presenting a potential pseudoreplication issue. We120

can find unique localities with the precision of either 3 (n3), 2 (n2), or 1 (n1)121

decimal degrees by rounding latitude and longitude coordinates and taking the122

mean species density value for non-unique localities.123

Species Total

occurrences

(n)

Fine (n3) Moderate (n2) Coarse (n1)

Alosa pseudoharengus 19 7 7 7

Ambloplites rupestris 20 20 20 20

Ameiurus natalis 39 39 39 37

Ameiurus nebulosus 128 85 84 82

Anguilla rostrata 44 44 44 44

Campostoma anomalum 59 12 12 12

Campostoma oligolepis 211 25 25 24

Catostomus catostomus 38 5 5 5

Catostomus commersoni 171 26 26 26

Cottus carolinae 143 27 27 24

Cottus cognatus 36 7 6 6

Couesius plumbeus 1217 128 128 117

Cyprinella analostoma 479 110 109 97

Cyprinella spiloptera 69 28 28 27

Cyprinella venusta 151 150 150 143

Cyprinus carpio 80 13 13 13

Enneacanthus gloriosus 102 30 30 29
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Enneacanthus obesus 100 100 100 98

Erimyzon oblongus 47 11 11 11

Esox americanus 84 82 82 75

Esox lucius 80 80 80 78

Esox niger 36 36 36 35

Etheostoma blennioides 25 7 7 7

Etheostoma caeruleum 594 91 90 84

Etheostoma flabellare 88 88 88 81

Etheostoma olmstedi 27 9 9 8

Fundulus diaphanus 165 36 36 36

Fundulus olivaceus 116 15 15 15

Ictalurus punctatus 502 54 54 50

Lepistoseus oculatus 25 25 25 24

Lepistoseus osseus 142 120 120 118

Lepomis auritus 139 28 27 27

Lepomis gibbosus 21 10 10 10

Lepomis macrochirus 102 102 102 97

Lota lota 28 8 8 8

Luxilus cornutus 12 4 4 4

Margariscus margarita 39 39 38 33

Micropterus dolomieu 300 63 63 59

Micropterus salmoides 55 55 55 54

Morone americana 987 122 122 110

Moxostoma duquesnei 43 43 43 42

Moxostoma erythrurum 29 9 9 8

Notemigonus crysoleucas 15 5 5 5

Notropis bifrenatus 104 24 24 24
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Noturus exilis 23 5 5 5

Oncorhynchus mykiss 274 46 46 44

Osmerus mordax 539 105 103 93

Perca flavescens 61 61 61 59

Percina nigrofasciata 18 6 6 5

Percina sciera 34 6 6 6

Phoxinus eos 22 8 8 8

Phoxinus neogaeus 45 9 9 8

Pimephales notatus 180 29 29 29

Pimephales promelas 20 6 5 5

Pomoxis nigromaculatus 24 24 24 24

Rhinichthys atratulus 134 36 35 32

Salmo salar 78 13 13 13

Salmo trutta 312 30 30 29

Salvelinus fontinalis 480 88 88 79

Salvelinus namaycush 138 30 30 27

Semotilus atromaculatus 22 22 22 22

Semotilus corporalis 43 19 18 18

Stizostedion vitreum 17 4 4 4

13



The influence of distance measure used124

While not mentioned in the comment, some researchers are concerned that the125

use of Euclidean distance in niche space could have influenced our overall findings.126

For thoroughness, we re-analyzed our data using Mahalanobis distance instead of127

Euclidean distance, finding no change in our results (Figure S1). This is either128

because the distance measure doesn’t strongly influence the overall relationship,129

or because our niche axes were based on a PCA decomposition of 56 climatic130

covariates, and the first two axes are orthogonal. As a consequence, covariance131

structure is nearly zero. Apart from not influencing our results, we found both132

distance measures were highly correlated, suggesting the choice of distance measure133

is unlikely to influence our overall conclusions (Figure S2).134
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Figure S1: The relationship between distance from the niche centroid and species

population density for four groups of species, using either Euclidean distance (left

panel) or Mahalanobis ditance (right panel). The use of distance metric did not

influence our failure to detect significant distance-abundance relationships.
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Figure S2: For each species, we calculated the correlation between distances from

niche centroids calculated as Euclidean and Mahalanobis distance and calculated

the correlation between distance meausures for each species. These relationships

tended to be quite positive and near 1, suggesting that the two metrics were

strongly related.
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