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1  | INTRODUC TION

Helminth parasites are a global human health threat, but despite 
impacts comparable to Human Immunodeficiency Virus (HIV) and 
influenza in terms of morbidity and mortality (Lustigman et al., 2012; 
Mathers, Ezzati, & Lopez, 2007), helminthiases remain among the 

‘great neglected tropical diseases’ (Hotez et al., 2008). Helminths 
disproportionately affect human populations in developing coun‐
tries (Crompton, 1999), representing a substantial medical, ed‐
ucational, and economic burden (Hotez et al., 2008). Efforts are 
currently underway to better understand the global distribution and 
burdens of helminth parasites in humans (Brooker, Hotez, & Bundy, 
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Abstract
Aim: To explore spatial patterns of helminth parasite diversity, and to investigate 
three main macroecological patterns – (a) latitude–diversity relationships, (b) positive 
scaling between parasite and host diversity, and (c) species–area relationships – using 
a largely underutilized global database of helminth parasite occurrence records.
Location: Global.
Methods: We examined the London Natural History Museum’s collection of hel‐
minth parasite occurrence records, consisting of over 18,000 unique host species 
and 27,000 unique helminth parasite species distributed across over 350 distinct ter‐
restrial and aquatic localities.
Results: We find support for latitudinal gradients in parasite diversity and a strong 
relationship between host and parasite diversity at the global scale. Helminth species 
diversity–area relationships were not detectable as a function of host body mass, but 
larger geographic areas supported higher parasite richness, potentially mediated 
through higher host richness.
Main conclusions: Our findings indicate that helminth parasites may obey some of 
the macroecological relationships found in free‐living species, suggesting that para‐
sites may offer further support for the generality of these patterns, while offering 
interesting counterexamples for others. We conclude with a discussion of future di‐
rections and potential challenges in the newly emerging macroecology of infectious 
disease.
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2010; Pullan & Brooker, 2012; Pullan, Smith, Jasrasaria, & Brooker, 
2014), with the goal of guiding research and control efforts (Brooker 
et al., 2010). In contrast, few attempts have been made to eluci‐
date the global distribution of helminths of wildlife (Chowdhury & 
Aguirre, 2001; see Figure 2). However, given the estimated richness 
of parasites (Dobson, Lafferty, Kuris, Hechinger, & Jetz, 2008) – and 
helminth parasites in particular (Larsen, Miller, Rhodes, & Wiens, 
2017) – understanding the spatial distribution of parasite diversity 
represents an obtrusive knowledge gap in parasite ecology.

The search for general ecological rules related to the spatial dis‐
tribution of diversity has promoted the development of macroeco‐
logical theory (Brown, 1995; Gaston & Blackburn, 2008). This body 
of theory is traditionally applied to free‐living species across space 
and time, aiming to identify general patterns that span systems (e.g. 
aquatic versus terrestrial). Many of these patterns focus on the dis‐
tribution of species diversity. Three such examples are (a) latitudinal 
diversity gradients, (b) consumer–resource diversity scaling, and (c) 
species–area relationships. Latitudinal diversity gradients – the ob‐
servation that species diversity is higher at lower absolute latitudes 
– have been observed in both terrestrial (Hillebrand, 2004) and ma‐
rine (Tittensor et al., 2010) systems. Consumer–resource diversity 
scaling suggests that more diverse resource communities are associ‐
ated with more diverse consumer communities (Jetz, Kreft, Ceballos, 
& Mutke, 2009), suggesting that more diverse host communities 
should support more species‐rich parasite communities (Johnson et 
al., 2016; Wood & Johnson, 2016). Lastly, species–area relationships 
relate the area of a given habitat to species richness, based on the 
idea that larger areas are more diverse and capable of supporting a 
greater number of species (Evans, Warren, & Gaston, 2005).

Parasite ecology has only recently begun to address the extent 
to which macroecological patterns apply to parasites (Hechinger, 
2015; Kamiya, O’dwyer, Nakagawa, & Poulin, 2014a; Krasnov, 
Shenbrot, Khokhlova, & Allan Degen, 2004; Poulin, 2007). These 
efforts have been facilitated by increased parasite occurrence data 
availability (Carlson et al., 2017; Gibson, Bray, & Harris, 2005), and 
the pressing need to understand how host–parasite interactions will 
change across a shifting environmental landscape (Lafferty, 2009). 
Recent parasite macroecology studies – for example, Morand and 
Krasnov (2010), Stephens et al. (2016) and Guernier, Hochberg, and 
Guégan (2004) – have also revealed that parasites can provide inter‐
esting and unique tests of macroecological theory. This is, in part, 
because the spatial distribution of parasites is controlled by two 
different filters. First, the external environment can influence the 
geographic distribution of parasites. In the case of helminths, abiotic 
factors such as temperature (Ford, Nollen, & Romano, 1998; Nollen, 
Samizadeh‐Yazd, & Snyder, 1979; Shostak & Samuel, 1984), salinity 
(Ford et al., 1998; Howe & Nollen, 1992), humidity (Pandey, Chaer, & 
Dakkak, 1993) and pH (Howe & Nollen, 1992) can affect the survival 
of parasite stages that persist outside the host. Second, the occur‐
rence of helminth parasites is determined by the presence and abun‐
dance of suitable host species. Thus, helminth parasites are subject 
to environmental and host availability constraints that have resulted 
in a variety of helminth behavioural, physiological and morphologi‐
cal adaptations (Hayunga, 1991) likely placing controls on helminth 
species distributions. Notably, a greater understanding of how these 
two filters interact to shape parasite occurrences can promote the 
development of predictive models of helminth parasitism (Dallas, 
Park, & Drake, 2016), and facilitate studies of how shifting host 

F I G U R E  1  A comparison of data size of existing host–parasite databases demonstrates that the London Natural History Museum (LNHM) 
helminth occurrence database is the most species‐rich and extensive collection of helminth parasite records – and, to our knowledge, all 
parasites – to date. Point size is proportionately to the log‐transformed number of records in each database. Both the number of unique 
host species (x axis) and the number of unique parasite species (y axis) are on log‐scale, allowing the visualization of smaller local or regional 
datasets that are commonly examined (e.g. National Center for Ecological Analysis and Synthesis (NCEAS) interaction web data)
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distributions influence parasite distributions (Carlson et al., 2017). 
Moreover, examining parasites in this manner can address to what 
extent parasite macroecological patterns are simply emergent prop‐
erties of host distributions as opposed to true relationships.

Here, we use an extensive database from the London Natural 
History Museum (Box 1) to provide some of the first tests of macro‐
ecological theory with helminth parasites at a global scale. First, we 
describe the global distribution of host and helminth parasite richness 
and address the role of variable sampling effort. Next, we gauge sup‐
port for three central macroecological patterns: (a) latitudinal diversity 
gradients, (b) host and parasite richness relationships, and (c) parasite 
species–area relationships. For each of these relationships, we at‐
tempt to standardize parasite richness by the number of host species, 
with the aim of parsing out the influence of macroecological patterns 
in host species from those corresponding to helminth parasite diver‐
sity. We conclude with a discussion of the potential limitations and 
inherent challenges in testing macroecological theory with parasites.

F I G U R E  2   The global distribution of the standardized parasite richness (i.e. log‐transformed mean number of parasite species per host 
species) according to the London Natural History Museum’s extensive helminth parasite occurrence database

Box 1: Helminth data from the London Natural History 
Museum

Parasitologists have accumulated large amounts of 
host–parasite association records for helminth parasites, 
which make the application of macroecological theory to 
parasites increasingly feasible. Along, with databases cu‐
rating free‐living species occurrence and biological trait 
data (e.g. https://www.gbif.org/, Jones et al., 2009), there 
are now unprecedented opportunities to address long‐
standing questions about the large‐scale patterns of diver‐
sity and distribution of helminth parasites.

Several sources of animal host–parasite occurrence data 
have recently become freely available, including FishPEST 
(Strona & Lafferty, 2012) and the Global Mammal Parasite 
Database 2.0 (Stephens et al., 2017). Similar datasets also 
exist for humans (e.g. see https://www.thiswormyworld.
org/), and compiled global occurrence datasets are rapidly 
becoming available (e.g. Carlson et al., 2017). In this study, 
we took advantage of an, as yet, underutilized source of 
host‐helminth occurrence data curated by the London 
Natural History Museum (LNHM), and freely accessible to 
the public via a web‐interface, a well‐developed applica‐
tion programming interface, and an R package (helminthR; 
Dallas, 2016).

The LNHM parasite database is a collection of helminth 
occurrence data from published studies (Gibson et al., 2005), 
consisting of platyhelminths (trematodes and cestodes), ac‐
anthocephalans, and nematodes. The dataset contains over 
18,000 unique host species and 27,000 unique helminth par‐
asite species distributed across over 350 distinct terrestrial 
and aquatic localities. For comparison, the LNHM helminth 
database contains over 215,000 host–helminth occurrence 
records, which is over seven times the contents of the Global 
Mammal Parasite Database (Nunn & Altizer, 2005; Stephens 
et al., 2017; approximately 30,000 records) and more than 
double the US National Parasite Collection (Lichtenfels, Pilitt, 
& Hoberg 1992; approximately 90,000 digitized specimen 
records). In terms of both numbers of host and parasite spe‐
cies represented, the LNMH database is also the most spe‐
cies‐rich, freely accessible, database currently being used by 
researchers to address large‐scale questions about parasitism 
(Figure 1).

https://www.gbif.org/
https://www.thiswormyworld.org/
https://www.thiswormyworld.org/
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2  | HELMINTH MACROECOLOGIC AL 
PAT TERNS

2.1 | Spatial distribution of helminth parasite 
diversity

Global parasite richness estimates vary widely (Dobson et al., 2008; 
Larsen et al., 2017), and only recently have efforts been made to un‐
derstand the spatial distribution of parasite richness on a global scale 
(Han, Kramer, & Drake, 2016; Stephens et al., 2016). The size of the 
LNHM data allows for the creation of global helminth parasite richness 
maps at the country level. Understanding species global distributions 
is a pressing need given land use change and an accelerating rate of 
species extinctions (Carlson et al., 2017; Cizauskas et al., 2017; Pimm 
et al., 2014). Further, understanding hotspots of parasite richness and 
diversity is a first step toward understanding spatial variation in trans‐
mission risk and parasite spillover (Poulin, Guilhaumon, Randhawa, 
Luque, & Mouillot, 2011; Poulin, Krasnov, Mouillot, & Thieltges, 2011).

Based on helminth occurrence records from the published litera‐
ture contained in the LNHM helminth database, we find that helminth 
richness is heterogeneously distributed globally. As geographic local‐
ities with more host species would be expected to also have higher 
parasite richness (see Scaling between host and helminth parasite 
richness), we considered the global distribution of parasite richness 
standardized by host species richness (i.e. the mean number of par‐
asite species per host species). Using this approach, we observed 
several helminth parasite richness hotspots for example, in western 
Europe, India, and southern Africa (Figure 2). However, variation in 
research effort among countries and publication biases favouring 
host–helminth occurrences published in journals written in English 
may result in incomplete estimates of total parasite diversity. To vi‐
sualize this effect, we quantified sampling effort as the mean number 
of citations in support of each unique host and helminth species pair 
(Supporting Information Figure S1), and examined the relationship 
between sampling effort and standardized parasite species richness.

Sampling effort was unrelated to standardized parasite species 
richness at the country scale (ρ = .078, p = .13). Thus, while sampling 
biases undoubtedly exist in large‐scale databases based on pub‐
lished literature and museum specimens, the lack of detected bias 
suggests that our standardized measure of helminth diversity man‐
aged to capture relative patterns of species richness fairly well. It is 
also possible that our measure of bias failed to capture the underly‐
ing sampling bias adequately, thus we examined the issue of spatial 
biases further in the Supporting Information.

In the rest of the paper, we focus on testing three macroeco‐
logical patterns: (a) latitudinal diversity gradients, (b) scaling be‐
tween host and parasite diversity, and (c) parasite species–area 
relationships.

2.1.1 | Latitudinal patterns of parasite richness

The latitudinal diversity gradient (LDG) is one of the most striking and 
pervasive biogeographic patterns, where diversity increases toward 

the tropics for many free‐living taxonomic groups (Hillebrand, 2004; 
Tittensor et al., 2010). A similar pattern has been predicted for para‐
sites (Poulin & Leung, 2011); however, previous investigations have 
yielded mixed results for parasites infecting wild primates (Nunn, 
Altizer, Sechrest, & Cunningham, 2005) and humans (Guernier et al., 
2004; Murray et al., 2015).

For helminth parasites contained within the LNHM database, we 
observed latitudinal diversity gradients, in which helminth species 
richness peaked around 30–40°N, with smaller secondary and ter‐
tiary peaks in the tropics (Figure 3a). The atypical temperate zone 
peak may reflect the existence of a sampling bias toward developed 
countries in the northern temperate regions. This is evident in the 
similar peak of number of countries and host species with records. 
Uneven sampling across regions has been a major obstacle to investi‐
gating parasite biogeographic patterns and potential drivers (Poulin, 
2014; Poulin & Morand, 2000; Stephens et al., 2016). For example, 
the larger number of parasite species per host species near the Arctic 
region (primary peak in Figure 3c) than that in the tropics (secondary 
peak) is similar to previous findings of helminth species richness in 
freshwater fish (Poulin, 1997). However, until the effect of potential 
sampling bias toward charismatic Arctic animals like the polar bears 
and Arctic foxes can be removed, it is difficult to interpret this pat‐
tern as an implication of any biological mechanism (Poulin, 1997). As 
a simple way to account for sampling effort in our dataset, we di‐
vided the number of parasite species by the number of countries, as 
data on number of overall records was unavailable and the number 
of sampled countries is likely proportional to sampling processes. 
This correction revealed a pattern more similar to the classic LDG, 
showing a primary diversity peak between 20 and 0N and a second‐
ary peak between 0 and 20S (Figure 3d). This pattern suggests that 
the LDG might indeed apply to parasitic helminths. Developing algo‐
rithms capable of accounting for sampling biases (e.g. Guernier et al., 
2004) is crucial for further validation, but our analysis with simple 
sampling bias correction suggests that an LDG may potentially be 
a globally dominant pattern for helminth parasites, and thus invite 
further investigation of the underlying mechanisms.

The distribution pattern of species diversity is shaped by 
the spatial configuration of diversification and range dynamics 
(Jablonski et al., 2013; Mittelbach et al., 2007; Roy & Goldberg, 
2007; Stevens, 1989). Because the distribution of parasite species 
is largely dependent on the distribution of their host species, it 
seems reasonable to expect parasites to have similar LDGs as their 
hosts (Poulin, 2014). However, many parasites can disperse across 
ranges of more than one host species (Cumming, 1999), while others 
might not persist throughout the entire ranges of their host species 
(Hopper et al., 2014; Phillips et al., 2010). Thus, the resulting mis‐
matches between host and parasite range dynamics at large scales 
(reviewed in Hillebrand (2004)) suggest that correlations between 
parasite and host diversities found in some cases (e.g. Figure 3a 
and Murray et al., 2015) might be governed by fundamental eco‐
logical principles. For example, fundamental biogeographic prop‐
erties, such as climatic conditions and regional history (Marzal et 
al., 2011; Murray et al., 2015), might be equally (or more) important 
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as host distribution in determining parasite distributions, and both 
biogeographic and host factors are considered key constraints op‐
erating on a parasite’s niche. Similar to free‐living organisms, how 
different parasites respond to the variation (and future change) in 
different niche constraints depends on the biological traits of the 
parasites, including dispersal (transmission) strategy and life history 
(Mazé‐Guilmo, Blanchet, McCoy, & Loot, 2016; Poulin, Krasnov, et 
al., 2011). Understanding the relative role that parasite versus host 
and environmental traits play in shaping the distribution of parasites 
will shed light on the mechanisms giving rise to the patterns of di‐
versity we describe here.

2.1.2 | Scaling between host and helminth 
parasite richness

The relationship between habitat heterogeneity and species diversity 
is a commonly observed macroecological pattern (Tews et al., 2004). 
Given that the host represents the habitat for helminth parasites, we 

would expect host species richness to be positively associated with 
helminth species richness, mirroring the species diversity–habitat di‐
versity association in many free‐living systems (MacArthur, 1958). 
However, the slope of the relationship between host and parasite spe‐
cies richness may differ as a function of spatial area or spatial grain size 
(Wood & Johnson, 2016), mediated through incomplete sampling, or 
nonlinear relationships between increasing spatial area and habitat 
heterogeneity.

We detected a strong positive relationship between country‐
level host and parasite species richness (ρ = .96, t = 63.259, d.f. = 344, 
p < .0001; Figure 4). There was no detectable effect of country area 
on the slope of the relationship between host and parasite diversity 
(Figure 4). Further, this relationship was not strongly influenced by 
sampling effort, which we estimated as the total number of citations 
per country divided by the number of host species in that country 
(Figure 4). Our findings are qualitatively similar when using indepen‐
dent estimates of animal species diversity at the global scale, which 
we further explore in the Supporting Information. Similar host and 

F I G U R E  3   The latitudinal patterns of parasite diversity, relative to host diversity and the number of countries in each 10 latitudinal bin. 
Host and parasite diversity (a) and the number of countries included in each latitudinal bin (b) peaked around 40 latitude. However, when 
parasite diversity was standardized by the number of host species (c) or the number of countries (d) in each latitudinal bin, different patterns 
emerged, with parasite diversity per country suggestive of the classic latitudinal diversity relationship, but parasite diversity per host species 
tending to increase at higher latitudes, suggestive of low species richness of host and parasite species confounding the ability to detect any 
macroecological relationship

(a) (b)

(c) (d)
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parasite diversity relationships have been observed in bird–trema‐
tode (Hechinger & Lafferty, 2005) and small mammal–flea systems 
(Krasnov et al., 2004). To our knowledge, this is the first examination 
of the relationship between host and parasite species richness at the 
global scale.

The observed relationship between host and helminth par‐
asite species richness is consistent with recent studies linking 
ecosystem health and parasite richness (Hudson, Dobson, & 
Lafferty, 2006; Lafferty, 2008), where intact host diversity 
may sustain parasite diversity. Indeed, a recent meta‐analysis 
has suggested that this is a general pattern across parasite taxa 
(Kamiya, Odwyer, Nakagawa, & Poulin, 2014b) despite inherent 
complications related to spatial processes (Krasnov et al., 2004; 
Wood & Johnson, 2016). The close relationship between host 
and parasite species richness – after controlling for the effects 
of country area – suggests that the loss of host diversity could 
result in the loss of parasite diversity. Given ongoing debate 
about the generality of links between host diversity and infec‐
tious disease risk (Huang, Langevelde, Estrada‐Peña, Suzan, & 
Boer, 2016; Keesing, Holt, & Ostfeld, 2006), further research on 
the causal mechanisms underlying this relationship, as well as 
the identification of outliers (e.g. parasite diversity is higher than 
expected given host diversity), is warranted. Understanding how 
changes in host and parasite species diversity influence disease 
risk has clear public health implications: as such, understanding 
the mechanisms by which parasite diversity is constrained by ex‐
isting host communities is a fundamental gap in our understand‐
ing of diversity.

2.1.3 | Parasite species–area relationships

Larger geographic areas are expected to sustain a higher number 
of species both due to random accumulation of species with finite 
ranges, and over broader scales the accumulation of different habi‐
tats (and associated species with specialized ecological niches). In 
conventional macroecology, the Arrhenius species–area relationship 
(SAR) is a canonical scaling pattern that suggests richness should usu‐
ally scale (in log‐log space) relative to area to the one‐quarter power. 
However, that relationship has recently been shown to be scale‐de‐
pendent and tends toward zero at continental scales (Harte, Smith, 
& Storch, 2009), which can be further affected in complex ways by 
fragmentation, geometry, and evolutionary history. Moreover, while 
species–area relationships are typically measured by a regression of 
the number of free‐living species in an increasing geographic area, 
even this definition leaves substantial methodological flexibility. For 
example, the island SAR refers to comparing different non‐overlap‐
ping areas like islands or countries, whereas the nested or continental 
SAR refers to the accumulation of species richness over increasing 
nested scales (Harte et al., 2009).

Whether or not parasites follow consistent species–area rela‐
tionships, similar to those of free‐living species, is presently a largely 
unaddressed question, with a handful of exceptions (Gregory, 1990; 
Guilhaumon, Krasnov, Poulin, Shenbrot, & Mouillot, 2012; Krasnov 
et al., 2004; Price & Clancy, 1983). Species–area relationships in par‐
asites would occur if parasite species richness was related to geo‐
graphic area, either through the relationship with host richness in 
combination with host SARs, or as a function of habitat heterogene‐
ity promoting parasite diversity (Johnson et al., 2016). However, the 
concept of the species–area relationship is frequently ‘adapted’ for 
the parasitic life cycle, formulated as the scaling between parasite 
richness and host species geographic range, or parasite richness and 
host body size (both on a per‐host basis). Any of these given rela‐
tionships, rather confusingly, may be referred to as the species–area 
relationship. For clarity, we distinguish between these by referring 
to them as the island species–area relationship and the body size 
species–area relationship, respectively (discussed below).

The nested species area is a universal property of finite space (in 
that the term itself makes no description of the shape of the curve), 
but no canonical slope has been suggested for this parasite spe‐
cies–area relationship. What limited work has been done suggests a 
range of slopes comparable to those for free‐living species (between 
0.1 and 0.3; Price & Clancy, 1983)s. On the other hand, some argue 
that these same species–area relationships may often fail to emerge 
when formulated using host range size (Strona & Fattorini, 2014). 
More common is the observation that host body size, a proxy for 
‘area’, scales with parasite species richness (the body size species 
area relationship, or BS‐SAR; e.g. Guégan & Hugueny, 1994). Based 
on island biogeography theory, host species may be considered 
patches of available habitat, and hosts with more habitable area (and 
a greater number of complex structures on which parasites can spe‐
cialize, internally or externally) should harbour a greater number of 
parasite species. Previous studies have investigated these patterns 

F I G U R E  4   The number of host species was strongly related 
to the number of parasite species. Each georeferenced country is 
plotted as a point, and point colour corresponds to the land area of 
the given country. Points in grey represent localities for which data 
on geographic area were unavailable. Coloured lines are best fit 
linear models to each data subset
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independently for helminth parasites across subsets of habitat types 
and host species.

Comparisons of host range versus parasite richness generally 
support the SAR pattern (Gregory, 1990; Price & Clancy, 1983), as do 
tests of the relationship between host body size and helminth spe‐
cies richness (Ezenwa, Price, Altizer, Vitone, & Cook, 2006; Kamiya 
et al., 2014a; Nunn, Altizer, Jones, & Sechrest, 2003). Perhaps the 
strongest evidence for a parasite SAR comes from a recent meta‐
analysis which suggests that host body size, geographic range size, 
and population density are typically positively related to parasite 
richness (Kamiya et al., 2014a). On the other hand, the studies exam‐
ined in the meta‐analysis were at substantially smaller spatial scales, 
and we based on fewer host‐parasite association records relative to 
this work. Given the scale dependence of most biodiversity drivers, 
the patterns that generally hold true in studies at regional or tax‐
onomically limited scales may fail to emerge at the continental or 
global scale. Thus, our analyses expand on previous work by explor‐
ing relationships between helminth parasite richness and (a) country 
area and (b) host adult body mass at a global scale. Whichever types 
of species–area relationships are observed could provide evidence 
that parasite diversity patterns are sufficiently strong to counter ef‐
fects such as that of parasite specialization, inconsistencies in host 
and parasite range overlap, and other reasons discussed in further 
detail in Strona and Fattorini (2014) and in Krasnov et al. (2004).

First, we examined the island species–area relationship by 
relating host and parasite species richness to land area for each 
sampled country (n = 121). Both parasite and host diversity scale 
linearly on a log‐log scale with country area (Figure 5), with es‐
sentially equivalent scales (parasites: z = 0.449, adjusted R2 = .366; 
hosts: z = 0.436, adjusted R2 = .357). The same qualitative pattern 
is produced for standardized richness, that is, species counts di‐
vided by citation counts (parasites: z = 0.371, adjusted R2 = .351; 
hosts: z = 0.358, adjusted R2 = .303). Based on this finding, we 
found little evidence to suggest parasite richness scales differently 
than host richness. In fact, when parasite richness is standardized 
by host richness, we failed to detect an effect of country area on 
standardized parasite richness (z = 0.001, adjusted R2 < .001). This 
pattern could be explained by at least two macroecological null 
hypotheses: either parasite richness is simply an emergent prop‐
erty of host richness that scales with country area, or parasite 
and host diversity scale independently with area at the same rate. 
Given that host and parasite richness scale more strongly with 
each other than they do with geographic area (see Figure 4), the 
former appears more likely.

Second, we tested for a host body size–parasite species re‐
lationship, examining if the number of helminth parasite species 
infecting a host species depended on the body mass of the host 
species. Larger hosts are larger habitat patches for parasites 
(Kuris, Blaustein, & Alio, 1980); this larger habitat may lessen the 
effects of competition (Telfer et al., 2010), or enhance encounter 
rates between host and parasite species. Because host body mass 
estimates were obtained from Pantheria (Jones et al., 2009), this 
analysis was confined to mammals, which comprised a subset of 

F I G U R E  5   The geographic area of a country (km2) was positively 
related to host and parasite diversity, but not to a standardized 
measure of parasite diversity. This suggests that geographic 
area–parasite richness relationships may arise as a consequence of 
positive geographic area–host richness relationships
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1,105 host species in the LMNH dataset. We failed to detect a 
strong influence of host body mass on helminth parasite richness, 
even when controlling for host geographic range size (Figure 6). 
We examine the relationship more thoroughly in the Supporting 
Information, finding a weak positive relationship between host 
body mass and parasite species richness, but the fit model was 
only marginally better than an intercept‐only model, and explan‐
atory power was minimal (Supporting Information Tables S1 and 
S2). Previous meta‐analyses have found strong evidence in the 
literature for the BS‐SAR, even controlling for other confounding 
factors (Kamiya et al., 2014a). Host body size is still likely an im‐
portant constraint or covariate of parasite diversity at ecosystem 
scales, or within host and parasite clades; but the weak global BS‐
SAR suggests that body size may not be a universal covariate of 
helminth diversification, compared to raw host diversity. We how‐
ever caution that parasite specificity, the distribution of available 
host individuals of a given body size, and body size variation within 
individual host species may confound the search for a global para‐
site diversity host body size relationship, as may additional factors 
like group social behaviour or sexual selection.

3  | IMPLIC ATIONS OF HELMINTH 
MACROECOLOGIC AL PAT TERNS

We used the most extensive database on host–helminth interactions 
compiled to date to test three of the most common macroecologi‐
cal patterns observed in free‐living species: (a) latitudinal diversity 
gradients, (b) scaling between host and parasite richness, and (c) 
species–area relationships. This three‐pronged analysis allowed us 
to evaluate how two key constraints on parasite diversity and dis‐
tributions – the environment and host biology – help shape the 
global distribution of helminth parasites. Overall, our results suggest 

that helminth distributions are tightly linked to both environmental 
and host factors, and encourage future macroecological hypoth‐
esis testing on parasitic species. Specifically, we found support for 
the latitudinal diversity gradients for helminth parasites as well as 
strong positive scaling between host and parasite species richness 
across regional host–parasite assemblages. However, after stand‐
ardizing parasite richness by observed host richness, we failed to 
detect significant species–area relationships in helminth parasites 
either as a function of region area or host body size, suggesting that 
some macroecological patterns observed for parasites may simply 
be emergent properties of the host community. Distinguishing be‐
tween host‐driven and parasite‐driven macroecological patterns is 
an important consideration for future research.

By standardizing parasite diversity by host species richness in 
our species–area analyses, we address a fundamental aspect of test‐
ing macroecological theory with parasites; parasite diversity is con‐
strained by the available host community. That is, parasite species 
richness may follow macroecological hypotheses simply because 
free‐living host communities support macroecological hypotheses. 
This is especially clear when we considered the scaling between host 
and parasite species richness. While this represents a challenge, it 
also presents an opportunity to distinguish situations when para‐
sites support macroecological hypotheses after controlling for the 
confounding effect of host species distributions. For instance, in our 
examination of latitude diversity gradients, we standardized parasite 
richness by the number of host species, providing evidence for an 
effect of latitude on parasite richness after considering the existing 
host community. Due to logistical constraints and a desire to uti‐
lize the full dataset, we included aquatic localities. However, data 
cleaning and curation efforts are underway to promote the use of 
these data to parse out the effects of inland water bodies on spatial 
diversity patterns. Studies on parasite macroecology should be sen‐
sitive to the potential effects that host distributions can have, and 
whether observed patterns are true support for macroecological hy‐
potheses or simply artefacts of host diversity patterns.

Gauging support for macroecological hypotheses using these 
standardized measures of parasite species richness allows for com‐
parison to patterns in free‐living species. Similar work for microbial 
species has suggested that scaling patterns developed for macro‐
scopic free‐living species are supported for microbial species rich‐
ness and evenness (Locey & Lennon, 2016), as well as for microbial 
diversity–abundance relationships (Shoemaker, Locey, & Lennon, 
2017). Investigations of scaling relationships from macroecology 
may provide further evidence, or interesting counterexamples, of 
these established scaling relationships. Apart from the basic knowl‐
edge gained by using parasites to gauge support for macroecologi‐
cal phenomena, understanding the spatial distribution of parasites 
may allow forecasting of parasite distributional changes as a result 
of a shifting climate or shifting geographic distributions of host spe‐
cies (Carlson et al., 2017). This raises an important question: how 
will shifting species distributions influence the predictive power of 
current macroecological rules? Given that parasite species are de‐
pendent on free‐living species diversity, will the resulting changes to 

F I G U R E  6   We failed to detect an effect of adult host body 
mass on parasite diversity, even when attempting to control for 
host geographic range size. Body mass is used here as a surrogate 
for habitat available for parasite colonization. We separated hosts 
based on geographic range size as geographic range and body size 
are often conflated. Parasites may compete for space on or within 
host species, and larger host species should hypothetically be able 
to harbour more parasites due to their size
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host species distributions enforce macroecological rules? Addressing 
these questions will facilitate further understanding of global para‐
site diversity patterns, helping to identify hotspots of parasite di‐
versity (Han et al., 2016; Harris & Dunn, 2010), and potentially even 
promoting the conservation and management of parasitic species.
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