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Abstract

Networks are a way to represent interactions among one (e.g., social networks) or more

(e.g., plant-pollinator networks) classes of nodes. The ability to predict likely, but unob-

served, interactions has generated a great deal of interest, and is sometimes referred to as

the link prediction problem. However, most studies of link prediction have focused on social

networks, and have assumed a completely censused network. In biological networks, it is

unlikely that all interactions are censused, and ignoring incomplete detection of interactions

may lead to biased or incorrect conclusions. Previous attempts to predict network interac-

tions have relied on known properties of network structure, making the approach sensitive

to observation errors. This is an obvious shortcoming, as networks are dynamic, and some-

times not well sampled, leading to incomplete detection of links. Here, we develop an algo-

rithm to predict missing links based on conditional probability estimation and associated,

node-level features. We validate this algorithm on simulated data, and then apply it to a des-

ert small mammal host-parasite network. Our approach achieves high accuracy on simu-

lated and observed data, providing a simple method to accurately predict missing links in

networks without relying on prior knowledge about network structure.

Author summary

The majority of host-parasite associations are poorly understood or not known at all

because the number of associations is so vast. Further, interactions may shift seasonally,

or as a function of changing host densities. Consequently, host-parasite networks may be

poorly characterized since effects of cryptic host-parasite associations on network struc-

ture are unknown. To address this, we developed theory and applied it to empirical data

to test the ability of a simple algorithm to predict interactions between hosts and parasites.

The algorithm uses host and parasite trait data to train predictive probabilistic models of

host-parasite interaction. We tested the accuracy of our approach using simulated net-

works that vary greatly in their properties, demonstrating high accuracy and robustness.

We then applied this algorithm to data on a small mammal host-parasite network, esti-

mated model accuracy, identified host and parasite traits important to prediction, and
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quantified expected changes to structural properties of the network as a result of link

relabeling.

Introduction

Complex interactions between host and parasite species can be described as a network, with

host and parasite species as two distinct node types connected by links that represent associa-

tions between a given parasite and host species. Understanding the structure [1] and stability

[2, 3] of host-parasite networks is important for establishing drivers of host-parasite interac-

tions, parasite specificity, and the consequences of host extinctions on parasite diversity.

Recently, authors have applied concepts and tools from community ecology and graph theory

to host-parasite interactions [4–7] in an effort to understand how host and parasite communi-

ties interact, including investigations into how host community diversity influences disease

transmission [8], how parasites interact within infected hosts [9], and how host functional and

phylogenetic similarity promote parasite sharing [10, 11]. Additional research has focused

on topological measures of host-parasite networks—such as nestedness [12] and modularity

[13]—which attempt to quantify the formation of patterns of interactions between host and

parasite species. These patterns may influence network stability [2] and resilience [3]. Identify-

ing the factors influencing the formation of these patterns is an important nascent area of

research.

There is little consensus about whether various reported topological patterns are common

[14–16], which may be a result of the influence of sampling effort and the effect of incomplete

detection on measures of topological network structure [17]. Specifically, the detection of pat-

terns in most studies is predicated on having completely sampled the network of host-parasite

interactions. That is, all interactions between host and parasite species are assumed to have

been documented in the course of the study. However, such exhaustive sampling is rare at

best, as logistical constraints often limit detection of all interactions. Moreover, the total num-

ber of potential host-parasite interactions increases as a product of the number of host and

parasite species, creating a large number of opportunities for a missed detection of a host-para-

site interaction. It is unlikely that studies of ecological networks are recording all of the poten-

tial interactions between species, as even long term data have been unable to detect a large

number (nearly 50% of plant-pollinator interactions) of species interactions [18]. Incomplete

sampling compromises inference of network structure and stability, and may undermine stud-

ies of parasite specificity and measures of parasite species richness for a given host species.

Despite this complication, there is a body of research aimed at predicting host-parasite

interactions. This work is of clear importance to wildlife and human health—as the it is possi-

ble to identify potential spillover events [19–21]—and to a general understanding of the traits

associated with parasite specialization. To this end, current approaches examine parasite spe-

cies independent of the network within which they are embedded, using host traits to predict

likely interactions. Two such efforts attempted to predict the fish host community parasitized

by helminth parasites [22, 23]. However, approaches to date have not explicitly considered

how the distribution of host and parasite traits, or the complex interactions at the host-parasite

network level could influence predictability of host-parasite interactions. By considering all

potential interactions simultaneously, it is possible to find the most probable interactions

given the entire network, rooting the problem of predicting likely host-parasite interactions

within a body of theory from the study of complex networks [24, 25].

Predicting cryptic links in host-parasite networks
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Here, we address this problem by developing and testing a method capable of determining

the number of likely unobserved host-parasite interactions, and accurately predicting the most

likely, but undetected, host-parasite interactions in the network. This is not a new problem, as

computer scientists have struggled with the link prediction problem for decades, most notably

in studies of social networks [26–28]. We focus on link prediction in bipartite networks, with a

specific application to ecological networks. Previous work in link prediction for bipartite net-

works has required information on traits of both node classes (e.g., host and parasite species),

as well as knowledge of network topology (e.g., degree distribution) [29]. Here, we develop a

highly accurate link prediction method based on trait matching between host and parasite spe-

cies. That is, we make no assumption about network topology, but predict bipartite interac-

tions using only trait data on host and parasite species. We examine the performance of our

algorithm on simulated data extensively, and then test the algorithm on an ecological host-par-

asite network of small mammals and their resident parasite communities in a New Mexican

desert ecosystem.

Methods

A plug-in approach to conditional density estimation

We propose an approach to identifying cryptic associations in host-parasite networks based

on numerical estimation of conditional density functions. We represent the connections

between hosts and parasites as a sparse bipartite graph (H, P, E) with vertex setsH (host spe-

cies) and P (parasite species) and edges E, such that an edge connectsHi and Pj if species j para-

sitizes species i. If there is an edge betweenHi and Pj, we write yi,j = 1 whether the edge has

been observed or not; otherwise yi,j = 0. Not all edges have been observed and not all possible

edges exist. Thus, E consists of both observed edges Eo and unobserved edges Eu = EnEo and

is itself a subset of the possible edges ~E ¼ H � P. Attached to each host and parasite species

are vectors of features h and p, respectively. Thus, edge (Hi, Pj) has the combined feature set

xi,j = (hi, pj).
To identify cryptic links in Eu, we seek a ranking of edges according to their probability.

The probability that there is an edge between two vertices given its feature set is written

P(y = 1|x). From Bayes’ theorem, we have

Pðy ¼ 1jxÞ ¼
f1ðxÞPðy ¼ 1Þ

f ðxÞ

where f1 is the conditional probability of feature set xi,j given that yi,j = 1, P(y = 1) is the connec-
tance of the graph, and f is the density of all possible combined feature sets. That is, f1 is the

probability density of features when a link exists between host and parasite, and f is the density

of features for all possible host-parasite combinations. The model assumes that the observation

process (probability of detection) is either constant or random with respect to host and para-

site features. Extensions of this model could address this assumption through the incorpo-

ration of features related to sampling probabilities or the use of model simulations directly

incorporating the observation process. Since we seek only a rank ordering, we ignore P(y = 1)

which is simply a normalizing constant, and estimate q = f1/f.
Estimating q is a density-ratio estimation problem [30]. The plug-in approach we propose,

which we call plug-and-play, is to separately estimate f1 and f from the features of Eo and ~E and

to take the quotient as required for evaluating any given host-parasite pair, i.e., q̂ ¼ f̂1=f̂ . In

practice, we use the kernel density estimator npudens in the np package [31] and the “nor-

mal-reference” bandwidth. This nonparametric approach to density-ratio estimation was
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chosen because it generally performs very well, particularly when the feature set contains a

combination of binary and continuous features [32].

The estimated probabilities of all edges in ~EnEo are then evaluated and ordered. That is, the

model outputs the probability of each edge ~EnEo, which can then be ranked by the most prob-

able undetected edge in the set of cryptic links Eu. The AUC (area under the receiver operating

characteristic) statistic can be calculated by comparing the observed labels and the estimated

probabilities. If probabilities need to be translated into binary states, we begin with the most

likely cryptic link, and re-label unobserved edges in order until a stopping criterion is met.

Simulated host-parasite networks

Host-parasite networks were simulated as follows. First, we generated a number (typically

n = 5) trait values for both host and parasite species by drawing random numbers from a

beta distribution, with the two shape parameters (α and β) drawn from a uniform distribu-

tion bounded between 0.5 and 1.5. The beta distribution was chosen for its flexibility and

generality to many ecological and epidemiological problems [33, 34], as it is bound between 0

and 1, can take a variety of shapes, and is easily extensible (e.g., beta-binomial modeling; [35]).

Then, the probability that host i interacts with parasite j was given as the outer product of

host h and parasite p trait vectors, calculated as the row-wise product of host and parasite trait

matrices, where rows correspond to either host or parasite species and columns are traits. This

forms a matrix of h rows and p columns. This matrix (M) was scaled to the unit interval by

dividing each value by the maximum value observed. Interactions were assigned probabilisti-

cally by conducting single binomial trials with probabilityMi,j. This process was performed

iteratively until a specified connectance value was reached (c = c�).

h ¼ ½h1; h2; . . . hi�

p ¼ ½p1; p2; . . . pj�

M ¼ h� p

while(c< c�)

Mi;j ¼
1 if Mi;j > Uð0; 1Þ

� if Mi;j < Uð0; 1Þ

(

Model validation on simulated data

To determine how well the plug-and-play model performed, we tested the predictive

accuracy of the model on simulated data. We trained models on 80% of the simulated data,

and predicted on the remaining 20% test set, i.e., a setup that assumes only 80% of host-para-

site associations to have been sampled. (This criterion is relaxed in the Supplemental Materials

where we show how the fraction of the network used for model training influenced predictive

accuracy; S1 Fig). The AUC statistic was uesd as a measure of predictive accuracy, and exam-

ined how model performance was influenced by interaction matrix size, the fraction of realized

links (i.e., connectance), the number of traits used to predict species interactions, and the

inclusion of binary (e.g., thresholded at the mean) and uninformative (e.g., standard normal

variates) traits (see Supplemental Materials for more information). Unless otherwise stated,

species interaction matrices were created and predicted using five host and parasite traits each,
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and a connectance (c) of 0.2, which reflects observations of empirical host-parasite networks

[36].

First, we determined the predictive accuracy of our model on 1000 randomly generated spe-

cies interaction networks. To examine the influence of interaction matrix size, we varied host

and parasite species richness from 10 to 30, and simulated 50 networks for each host and para-

site richness combination. The influence of connectance was examined by creating 1000 spe-

cies interaction networks with 30 host species and 20 parasite species for each value along a

gradient of connectance values from 0.05 to 0.35. To examine the influence of host and para-

site trait number, we simulated 1000 species interaction networks for each host and parasite

trait number combination between 1 and 20 (total of 20,000 networks). The influence of train-

ing the model on binary trait data was examined by creating 1000 species interaction networks

created using 20 host and parasite traits, and varying the fraction of those 20 traits that were

binary from 5% (1 trait was binary) to 100% (all traits were binary). To determine if the inclu-

sion of random, uninformative traits influenced predictive power, we simulated 1000 species

interactions networks with 10 host and parasite traits, and included between 1 and 50 random

host and parasite traits (50,000 total species interaction networks). Lastly, we tested predictive

accuracy when the model was trained only on random traits by creating species interaction

matrices (1000 per treatment) and then shuffling trait values.

The plug-and-play model was able to predict links on simulated bipartite networks

with high accuracy (S2 Fig). Further, accuracy was not appreciably reduced by matrix size (S3

Fig), incorporation of binary variables (S4 Fig), number of host and parasite traits (S5 Fig),

connectance (S6 Fig), or the incorporation of random variables (S7 and S8 Figs). Specifically,

we found that more than three host and parasite traits were needed to have a mean AUC value

of 0.9, and training on only a single host and parasite trait resulted in moderate predictive

accuracy (AUC = 0.72).

Application to empirical data

We applied the plug-and-play algorithm to data on parasites of small mammals sampled

as part of the Sevilleta Long-Term Ecological Research project. We aggregated data from 1992

to 1997 from six sites in three nearby habitats into one interaction matrix. Details of animal

sampling and processing are reported elsewhere [4, 37]. Hosts with fewer than five captures

over the six year sampling effort were excluded from analysis, resulting in a total of 22 small

mammal host species and 87 parasite species, including both macroparasites (e.g., helminths)

and microparasites (e.g., coccidians).

Host trait data were obtained from Pantheria [38], supplemented with published literature

sources (see Supplemental Table A1 of [4] for more information). Host trait data included life

history traits (Table 1), and phylogenetic information. Phylogenetic relationships were esti-

mated using the first five axes of a principal coordinates analysis (PCoA) on the phylogenetic

distance matrix obtained using the mammal supertree [39] and the ape R package [40].

Together, these first five PCoA vectors captured 95% of the variance in the eigenvalues, sug-

gesting that most of the information in the phylogeny was captured in these five vectors.

Host life history traits included host diet breadth, body mass, home range size, maximum

age, and species abundance (Table 1). Parasite trait data included three variables representing

the life history and transmission modes of parasites; parasite type (arthropod, protozoan, or

helminth), parasite genus (genus), and location (intracellular or extracellular). Some host trait

data was unavailable, and we imputed the unavailable data using the randomForest R pack-

age [41]. This procedure imputes missing data by first replacing missing values with column

averages, and then iteratively updating imputed values based on proximity of observations to

Predicting cryptic links in host-parasite networks
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one another in the random forest model. Variable importance was determined by permuting

each predictor variable 500 times, and determining the reduction in model performance as a

result for each permutation. Model accuracy (AUC) was determined through 5-fold cross vali-

dation. The final model was trained on all available data.

Network structure changes with addition of missing links

We then determined the number of likely missing links from the host-parasite network, and

sequentially added the most likely links as predicted by our trained model. We used the Abun-

dance-based Coverage Estimator (ACE; [42]), commonly used for species richness estimation,

to estimate the number of missing links. ACE is a non-parametric species richness estimator

typically applied to communities of free-living organisms ([43, 44]) and has previously been

demonstrated to perform well for many different coverage levels and survey designs ([45]). We

treat links between known hosts and parasites to be equivalent to organisms in the traditional

context, which allows us to estimate the likely number of links missing from the network.

At each link addition, we calculated properties of the network to observe how network

structure changed with link addition. Some stuctural properties change obviously and deter-

ministically with link addition (e.g., mean degree and connectance), which we ignore. Rather,

we focused on stochastic aspects of network structure, including measures previously related

to network stability (nestedness; [3, 14]), aggegration of parasite species among host species

(togetherness and variance-to-mean ratio; [46]), and measures of interaction clustering or

host-parasite co-occurrence (C-score; [47]). The resulting changes to network metrics with

model-predicted link addition were compared with changes in network metrics if links were

added randomly.

Nestedness, quantified as the NODF metric [48], measures the tendency of hosts with few

parasites to harbor nested subsets of the parasite communities of parasite species-rich hosts,

and has previously been related to network structural stability [3]. Nestedness was quantified

relative a null model, as aspects of matrix size and fill alter the raw measure. Further, the use of

the standard score (z-score) allows a quantification of the magnitude of divergence from a null

expectation, which is commonly used for significance testing. Thus, this approach allows us to

determine changes in the magnitude of nestedness with link addition relative to a null expecta-

tion. We used the sequential swap algorithm to randomize matrix interactions [49], and com-

pared the empirical network to 1000 null networks after each link addition.

Table 1. Description and units of variables used to predict host-parasite network structure.

Trait Units Definition Mean SE

Adult mass g Average adult mass 63.34 13.71

Abundance no. Host abundance 177.3 54.53

Diet breadth no. Diversity of food eaten 4.04 0.31

Gestation length days Duration of fetal growth 28.44 0.83

Home range km2 Area of activity 1.03e−2 3.30e−3

Host phylogeny – PCoA on phylogenetic distance matrix – –

Litter size no. Average number of offspring per litter 4.53 0.34

Litter interval months Duration of time in between litters 8.28 2.22

Longevity months Maximum adult age 62.39 7.28

Parasite genus – Parasite genus – –

Parasite type – Arthropod, helminth or protozoan – –

Tissue infected – Location inside infected host (I or E) – –

https://doi.org/10.1371/journal.pcbi.1005557.t001
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Togetherness measures the tendency of host species to share parasites, with large values sug-

gesting ecological similarity between hosts may be more important than competition in driv-

ing community structure, and small values suggesting the opposite ([12, 50]). The variance-to-
mean ratio is an index of aggregation traditionally used in studies of single species parasite dis-

tributions [46, 51], where larger values indicate more skewed or aggregated parasite burdens.

Here, we use it to express the skew in parasite species richness for a range of host species.

Originally used to infer interspecific competition, the C-score (or checkerboard score; cal-

culated here as the mean pairwise score for all host species) is more generally a measure of

non-independence in species interaction patterns, with large values indicating that species

occupy different habitats ([47]). These interaction differences could be a result of interspecific

competition, dispersal limitation, or differences in host habitat utilization. In terms of host-

parasite networks, this would correspond to parasite communities with little overlap in host

use, such that parasite communities are clumped across the range of potential host species.

Results

The algorithm we develop here was able to accurately predict missing links in bipartite net-

works based solely on host and parasite traits, both in simulated networks (see Methods para-

graph “Model validation on simulated data”), and an empirical network of small mammal

host-parasite interactions sampled as part of the Sevilleta LTER.

Sevilleta host-parasite link prediction

The plug-and-play algorithm recovered the Sevilleta small mammal-parasite interaction

network structure with high accuracy (AUC = 0.82) when trained on all available data, and

performed fairly well during 5-fold cross validation, with a mean AUC from 500 training/test

data splits of 0.63, and a maximum observed AUC of 0.81. We permuted predictor variables to

obtain measures of variable importance, which suggested that host litter size, parasite genus,

and host diet breadth were the most important variables to model performance (Fig 1). Mean-

while, some covariates had a negative effect on the model, resulting in improvement in predic-

tive accuracy with randomization. These included coarse, low-variance variables such as

habitat breadth and trophic status, as well as potentially important variables such as parasite

type (e.g., helminths), and host body mass. Predictive model accuracy is predicated on the net-

work being fully sampled, such that predicted links that are not observed in the empirical net-

work are treated as errors, and reduce accuracy. We predicted that between 110 and 157 links

were missing from the empirical network, changing the connectance from 0.12 to between

0.18 and 0.21.

Network structure changes with link addition

We then sequentially added the most probable links, based on model-predicted suitability

scores (Fig 2), plug-and-play examine how network properties changed. Measures of network

structure fluctuated with link additions (Fig 3). Specifically, nestedness, quantified as the z-
score in NODF values relative to null models, fluctuated from -4.6 to -0.6. Since these z-scores

can be used for significance testing, this suggests that the addition of missing links can change

the ability to detect fundamental network properties. Further, togetherness, variance-to-mean

ratio, and C-score all declined more strongly with the addition of predicted missing links com-

pared to the addition of random links. Further, togetherness actually increased when link addi-

tion was random.

Predicting cryptic links in host-parasite networks
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Discussion

Here, we present, validate, and test a link prediction algorithm that does not require informa-

tion on network structure for training, extending the problem of link prediction in social net-

works to bipartite networks. This is important, as network structure is often dynamic, and

Fig 1. The relative importance of each variable in predicting parasite occurrence in the Sevilleta host-parasite network.

Variable importance is measured as the reduction in predictive power by randomizing each variable, and the resulting variable

importance scores are z-scores. Negative scores correspond to the proportional reduction in model performance as a result of

variable randomization. Traits are ordered by importance to the predictive model, with the key predictive covariates in the upper left

(e.g., litter size).

https://doi.org/10.1371/journal.pcbi.1005557.g001
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generalizing link prediction to novel or changing networks is necessary for some applications

(e.g., forecasting the most probable prey items or parasites of a novel host species to the net-

work). Our approach allows for the ranking of node characteristics, which can enhance our

understanding of what determines the likelihood of species interactions, and for the prediction

of cryptic interactions, which can influence network structure.

In our small mammal-parasite network, we determined that host litter size, parasite genus,

and host diet breadth were the top three most important predictors of host-parasite interac-

tions. Host litter size was the most important interaction predictor, suggesting the importance

of host life history traits. Because host litter size is linked to other aspects of host biology

known to alter parasite burdens, such as host metabolic rate [52], we suspect that the impor-

tance of litter size in this analysis may reflect an aspect of the host species’ pace of life [53, 54].

The second most important variable to our predictive model was parasite type (i.e., arthropod,

helminth, or protozoa), which accounts for unmeasured differences among parasite species in

their transmission or host preferences. Lastly, host habitat breadth, which can influence con-

tact rates with parasites was an important variable in our model. Interestingly, despite the

previously documented importance of host phylogenetic distance in predicting parasite

community similarity [10], we found no evidence that host phylogeny improved predictive

accuracy in this system. The inclusion of some covariates actively detracted from model per-

formance, a phenomenon not observed in simulated data. This is likely a result of the low

information content of these variables, or could signal the influence of variable interactions on

model predictive accuracy.

Fig 2. The Sevilleta interaction matrix, where rows correspond to parasite species, and columns to

rodent host species. Black boxes indicate an interaction between host and parasite, and color indicates log

transformed interaction suitability as determined by the plug-and-play algorithm. Larger suitability values

indicate a higher predicted likelihood of an interaction between a host (column) and parasite (row) species.

https://doi.org/10.1371/journal.pcbi.1005557.g002
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Our algorithm predicted that between 110 and 157 links were missing from the network.

When these links were added based on their suitability score, several network properties

changed, including nestedness, togetherness, variance-to-mean ratio, and checkerboard score.

While the ability to detect nestedness fluctuated with link addition, the other three metrics of

network interaction patterns demonstrated consistent declining trends. This suggests that the

interaction patterns became less clumped (as indicated by the checkerboard score), parasite

communities became less dissimilar (as indicated by togetherness), and less aggregated (as

indicated by variance-to-mean ratio). Taken together, these findings suggest link addition

was not confined to species that already had many links, otherwise the variance-to-mean ratio

wouldn’t have been reduced. Instead, the addition of missing links reduced overdispersion

commonly observed in many host-parasite networks (including in Fig 2).

Ecologists have long recognized the issue of incomplete sampling leading to imperfect

detection [55], but only recently have studies of ecological networks addressed this issue [2, 17,

56]. Here, we present an algorithm capable of accurately reconstructing a network using

information on interactor traits, and predicting interaction likelihoods. This overcomes the

Fig 3. The sequential addition of the most likely missing links resulted in changes to several network properties relative to the

change expected under random link addition (grey lines and dashed 95% confidence intervals). Specifically, the ability to detect

nestedness (a) fluctuated with link addition. Other patterns showed a much stronger directional signal, including reductions in togetherness,

variance-to-mean ratio, and C-score. Each of these metrics describes patterns of (dis)aggegration in node degree, suggesting that the

fundamental organization of the network changes with the addition of potentially missing links.

https://doi.org/10.1371/journal.pcbi.1005557.g003
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problem of imperfect detection, and allows for the forecasting of the most probable links in

ecological networks. Other approaches for the link prediction problem in bipartite networks

exist. For instance, recent Bayesian approaches have used occupancy models [17] and Dirichlet

network distributions [57]. However, these approaches are largely used to address slightly dif-

ferent problems. The first is an attempt to combine occupancy models with metacommunity

analysis, predicting missing links as a means to correct error, and not for the sake of predicting

unknown links. The second was developed to predict links in integer-based directed networks,

and was developed under the assumption that nodes have repeated and directed interactions,

such as a network of email correspondence among a group of people. Extensions of this

approach could potentially support binary bipartite networks as we have examined. Another

approach, the matching-centrality method [29], allows for the accurate forecasting of unob-

served links in both unipartite and bipartite networks. Our approach differs in that we rely

solely on trait matching between bipartite interactors to predict interaction probability, mean-

ing that the algorithm is insensitive to network structure (allowing for increased flexibility).

Lastly, by relying on host and parasite traits, our approach may provide insight into what host

traits, parasite traits, or trait combinations promote the likelihood of a host-parasite interac-

tion, and further provides a way to quantify the relative importance of host and parasite traits

to interaction patterns.

Extensions of our current approach could disentangle the effect of disproportionate sam-

pling effort, as well as other host and parasite traits, to provide a more complete understanding

of what controls host-parasite interactions. This trait-based approach can be applied to other

bipartite networks (e.g., plant-pollinator), as well as to spatial networks (e.g., metapopula-

tions). The incorporation of missing links into networks that change seasonally or are logisti-

cally difficult to sample provides a more accurate description of network interactions. Further,

the incorporation of these interactions may change basic network properties in non-random

ways. The functional consequences for revising our understanding of ecological networks are

not currently known.
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reconstruct the network with high accuracy. For these simulations, we used 5 host and parasite
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S3 Fig. The influence of matrix size on predictive accuracy of trained models. The color

gradient corresponds to AUC values, and the axes to the number of hosts and parasites in the

network.
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continuous traits to binary, but models trained on completely binary data still had high predic-
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S5 Fig. The influence of the number of traits used to train models on predictive accuracy.

At low trait numbers, predictive accuracy is reduced, but this effect is reduced after three host

and parasite traits are examined.

(PDF)

S6 Fig. The influence of network connectance on predictive accuracy. Low connectance

increases the variability in predictive accuracy, but not the mean accuracy.

(PDF)

S7 Fig. Random uninformative variables can sometimes affect model performance. Our

trained models were insensitive to the addition of uninformative variables, as we added up to

50 random variables without any influence on model performance.

(PDF)

S8 Fig. Models were trained using randomized trait variables, such that variables should

be uninformative, and model performance should converge to an AUC of 0.5. Model per-

formance stayed around 0.5 when models were trained on a range of random trait variables.

(PDF)
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