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Abstract1

1. The estimation of extinction dates from limited and incomplete sighting records2

is a key challenge in conservation (when experts are uncertain whether a species has3

gone extinct) and historical ecology (when the date and mechanism of extinction is4

controversial).5

6

2. We introduce a spatially-explicit method of interpolating extinction date estima-7

tors, allowing users to estimate spatiotemporal surfaces of population persistence8

from georeferenced sighting data of variable quality.9

10

3. We present the R package spatExtinct, which produces spatially-explicit11

extinction date surfaces from geolocated sightings, including options for custom12

randomization schemes to improve accuracy with limited datasets. We use simu-13

lations to illustrate the sensitivity of the method to parameterization, and apply14

the method to identify potential areas where Bachman’s warbler (Vermivora bach-15

manii) might be rediscovered.16

17

4. Our method, and the spatExtinct package, has the potential to help de-18

scribe and differentiate different drivers of extinction for historical datasets, and19

could be used to identify possible regions of population persistence for species with20

an uncertain extinction status, improving on non-spatial or imprecise methods that21

are currently in use.22

23

Keywords: extinction date estimation, optimal linear estimator, sighting records,24
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1 Introduction26

Biological extinctions are one of the most fundamental processes in ecology, and despite27

their significance and pervasiveness, they are often impossible to observe directly. Even if28

the last known individuals of a species are kept in captivity, uncertainty can still emerge29

depending on researchers’ confidence that the species is extinct in the wild. Moreover,30

“sightings” of a species are liable to continue long after a species is presumed extinct,31

compounding uncertainty and potentially fueling hope of rediscovery. (Carlson et al.,32

2017b) Every so often, true “Lazarus species” are found after absences of a few centuries33

(like the Bermuda Petrel, Pterodroma cahow) or millions of years (like coelocanths, La-34

timeria spp.) But the majority of species are never rediscovered, presenting conservation35

biologists with difficult decisions: when should a species be pronounced extinct, and at36

what point should valuable conservation resources be redirected elsewhere? (Collen et al.,37

2010; David & Davis, 2017)38

A variety of approaches have been developed to address these challenging situations.39

Some examine the relationship between species’ traits and ecology, and observed extinc-40

tion rates to estimate the probability of rediscovery (Fisher & Blomberg, 2010; Lee et al.,41

2017b). Others, which we term extinction date estimators (EDEs), make assumptions42

about the temporal distribution of sightings leading up to extinction, to estimate the43

most likely date of extinction and corresponding probability of persistence (Boakes et al.,44

2015). Over the past two decades, a number of methodological advances have made these45

methods more powerful and precise (Boakes et al., 2015), and in conservation practice,46

researchers are encouraged to use these different methods in combination when possible47

(Akçakaya et al., 2017).48

However, one notable limitation of almost all of these methods is that they treat49

extinction as a single event for an entire species. The total eradication of a species is50

usually the product of spatially-heterogeneous population declines over time, but spatial51

tools for reconstructing extinctions are lacking. Spatial kriging is sometimes used to52

interpolate first and last dates of appearance (Emery-Wetherell et al., 2017), but this53

basic method has a number of limitations. In particular, modeling based on the last54

observation is comparatively imprecise, as the extinction date estimation literature shows55

that the last sighting is usually insufficient to make educated predictions about a species’56

true extinction date. Moreover, the kriging approach uses a limited regional subset of57
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data, and makes no inferences based on any of the time series aspects of sighting records.58

In the context of applying this method to recent (and unconfirmed) extinctions, the59

kriging approach cannot be used to estimate the probability of persistence, or account for60

uncertainty in the veracity of sightings.61

Species distribution models (SDMs; also called ecological niche models, or ENMs) are62

another valuable tool for reconstructing the biogeography of extinct species. SDMs con-63

ventionally relate occurrence data (sightings) to environmental conditions via some form64

of regression or machine learning, and make inference about the geographic distribution65

of species based on their ecological niche. SDMs can be used to reconstruct the shifting66

distributions over time for extinct species like the megalodon (Carcharocles megalodon) in67

conjunction with extinction date estimators (Pimiento & Clements, 2014; Pimiento et al.,68

2016), though this application is tenuous over shorter timescales, as most SDM methods69

assume that distributions are at equilibrium within the scale of modeling. SDMs have also70

been used with long-extinct species to recover biologically-meaningful information from71

biogeographic data; for example, a recent study on the Carolina parakeet (Conuropsis72

carolinensis) identified two distinct subspecies’ ranges, and showed that only one sub-73

species exhibited partial seasonal migration (Burgio et al., 2017). In the shorter term,74

SDMs are a critical tool for conservation planning, and can be used to help guide the75

search for possibly-extinct species, even alongside extinction date estimators. (Makenov,76

2018) However, for the rarest species, the necessary occurrence data may be impossible to77

collect. Some workarounds exist, like using data from related species (Dunn et al., 2015),78

or using Bayesian belief networks to formalize ad hoc hypotheses about the species’ niche79

(Grainger et al., 2017). Even then, environmental suitability may be a poor proxy for80

presence especially for a species near extinction; in these cases, the total suitable area81

is likely to be much broader than the true area of occupancy. Methods from the occu-82

pancy modeling literature that address this pattern tend to be more data intensive, and83

require a depth and regularity of observations and abundance data that most putatively-84

or near-extinct species lack.85

We therefore identify a major unaddressed need: researchers interested in reconstruct-86

ing spatiotemporal patterns of extinction have limited options without explicit data on87

population declines. While the theoretical underpinnings of extinction date estimators88

could likely be extended to produce explicitly-spatial analytical approaches, these ex-89
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tensions have yet to be developed, creating an opportunity for the development of a90

computational, approximate approach. Here, we introduce the idea of spatial extinction91

date estimators (SEDEs) as a tool for recovering the geographic patterns of extinction and92

identifying where possibly-extant species might be rediscovered. The method we propose93

uses georeferenced sighting data to estimate extinction dates over a landscape, including94

for species that have a small chance of persisting somewhere undetected. We show how95

to optimize the method using simulations, and implement a case study with Bachman’s96

warbler (Parulidae: Vermivora bachmanii), a charismatic North American bird that is97

likely extinct.98

2 The Models99

2.1 Extinction Date Estimators100

How do we know if a species is extinct? Extinction date estimators (EDEs) determine the101

status of a species based on a set of “sightings” including observations, photographs, and102

physical evidence (like carcasses, specimens, or scat). Sightings can have different levels103

of support and of validity, and often continue long after a species is extinct. A sighting104

dataset can be expressed as an ordered set t = (t1, ...., tn), and extinction date estimators105

make an assumption about the distribution that generates those sightings before (and106

sometimes after) an extinction event to estimate the true date of extinction TE (Carlson107

et al., 2017a). One of the most popular methods, the optimal linear estimator (OLE) is108

a non-parametric method first used to estimate the extinction date of the dodo (Roberts109

& Solow, 2003). It assumes that the k last few sightings of a species follow a Weibull110

distribution:111

T̂E =
k∑

i=1

witn−i+1 (1)

112

w = (e′M−1e)−1M−1e (2)

where e is a vector of k 1’s, and M is a k by k matrix, for which113

Mij =
Γ(2v̂ + i)Γ(v̂ + j)

Γ(v̂ + i)Γ(j)
(3)
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114

v̂ =
1

k − 1

k−2∑
i=1

ln

(
tn − tn−k+1

tn − ti+1

)
(4)

An upper 95% confidence bound is given for the OLE by115

T̂ u
ci = Tn +

Tn − Tn−k+1

c(α)− 1
(5)

c(α) =

[
−log(α/2)

k

]−v̂
(6)

The OLE is one of the most popular EDEs, in large part due to its strong performance116

even in the face of confounding factors like temporal variation in sampling rates (Ri-117

vadeneira et al., 2009). The OLE performs well as an extinction date estimator with118

limited data, with experimental work finding no universally-optimal sample size and rec-119

ommending that the method can be best used with all available data (Clements et al.,120

2013). One notable downside of the OLE method is that it produces extremely wide con-121

fidence intervals, especially with larger datasets (Rivadeneira et al., 2009). However, the122

wide upper confidence bound can be a strength in cases where extreme levels of caution123

are desired from an extinction date study.124

One significant drawback of the OLE, and similar estimators, is that the inclusion125

of any invalid data proportionally produces significant error in the estimates (Roberts126

et al., 2010). More recently, a new class of EDEs have been proposed that account for127

variation in certainty and validity among different sightings (Boakes et al., 2015). These128

methods tend to be Bayesian, and assume that valid sightings can only exist prior to the129

extinction date (Solow et al., 2012; Solow & Beet, 2014; Lee et al., 2014). While some of130

these models can account for variable degrees of confidence in different data sources (Lee131

et al., 2014), recent work has indicated that expert evaluation of sightings beyond certain132

and uncertain sightings may be unnecessary (Lee et al., 2017a).133

In this study, we adapt two models from Solow & Beet (2014), which assume that134

data could contain a mix of valid and invalid sightings. The dataset of n sightings t in an135

interval (0, T ] is split in these models into certain (tc, with length nc) and uncertain (tu,136

with nu sightings including nu(T̂E) before T̂E) sub-datasets by researchers. The rubric for137

that split is subjective, but typically, certain sightings involve incontrovertible evidence138
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like a physical specimen, or a clear and uncontroversial photograph. In contrast, uncertain139

sightings have a much broader range from grainy but plausible video footage (as in the140

case of the ivory-billed woodpecker), down to unsubstantiated reports of modern-day non-141

avian dinosaurs. (Smith, 2015) In some cases, it may be helpful for data management to142

add extra levels of resolution within “uncertain,” such as expert versus novice sightings,143

even if the model makes no distinction.144

If valid sightings occur at a true rate Λ and invalid sightings occur at a true rate Θ,145

the proportion of valid sightings is given as146

Ω =
Λ

Λ + Θ
(7)

By allowing for a mix of certainty and validity within sightings before extinction, the147

model makes inferences about the strength of evidence after any hypothesized extinction148

date. Solow & Beet (SB) model 1 assumes that certain and uncertain sightings follow the149

same Poisson process. The conditional likelihood of the dataset t if the species is extinct150

is151

p(t|E) =

∫ T

L

p(t|τE)p(τE)dτE (8)

where tL is the date of the last certain sighting (the starting point of when extinction152

is possible). Based on the likelihood of the underlying Poisson process for sightings, the153

likelihood of the dataset given any extinction date is154

p(tu|T̂E) =

∫ 1

0

ω−nu(1− ω)n−n(T̂E)(n− 1)!(T̂E +
1− ω
ω

T )−ndω (9)

where ω is a stand-in for Ω, to allow integration over all possible values of Ω, the true155

value of which is unknown. In model 2, certain and uncertain sightings are generated by156

two independent Poisson processes, and the conditional likelihood of the whole dataset is157

the product of the likelihoods of the respective sub-datasets:158

p(t|T̂E) = p(tc|T̂E)p(tu|T̂E) (10)

p(tc|T̂E) =
(nc − 1)!

(T̂E)nc

(11)
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p(tu|T̂E) =

∫ 1

0

ω−nu(1− ω)nu−nu(T̂E)(T̂E +
1− ω
ω

T )−nudω (12)

where ω is again a stand-in for Ω.159

The probability the species went extinct in (0, T ], an event E, can be expressed using160

Bayes’ theorem:161

p(E|t) =
p(t|E)p(E)

p(t)
=

p(t|E)p(E)

p(t|E)p(E) + p(t|Ē)(1− p(E))
(13)

The prior probability of extinction p(E) is somewhat hard to set, so for explicit calculation,162

it is often uninformatively set to 0.5 (extinction and persistence are equally likely). If163

p(E) = p(Ē) = 0.5, that formula can be reduced to164

p(E|t) =
p(t|E)

p(t|E) + p(t|Ē)
(14)

which can be readily interpreted as the “probability of persistence” for the given year. In165

some cases, researchers may opt instead to use the Bayes factor, which expresses relative166

support for the alternative hypothesis and is given as167

B =
p(t|E)

p(t|Ē)
(15)

A higher Bayes factor implies stronger support for extinction, where a value of 3 or higher168

could be taken as strong evidence the species had gone extinct. While the advantage of169

the Bayes factor is that it avoids the problem of setting p(E) altogether, both the Bayes170

factor and p(E|t) require setting the conditional likelihood of the data p(t|E), which171

decomposes into172

p(t|E) = p(t|T̂E)p(T̂E) (16)

and conversely p(t|Ē) is evaluated using the same function but setting T̂E as T . The first173

term can be evaluated as derived above; but the prior probability of a given extinction174

date p(T̂E) is again subjective and difficult to set. The selection of priors for Bayesian175

EDEs is an important part of correctly implementing these methods (Solow, 2016); Solow176

& Beet (2014) suggest either a uniform, linear, or exponential decline after the last certain177

sighting, and while we have usually elected to use a uniform prior (Carlson et al., 2017b),178
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some researchers may elect to make more informed or constrained choices.179

2.2 Spatial Extinction Date Estimators180

Here we propose a new class of models we term spatial extinction date estimators (SEDEs):181

spatially-explicit interpolations of extinction date estimators using georeferenced sighting182

data. Whereas EDEs treat extinction as a one-time irreversible event for an entire species,183

spatial extinction date estimation decomposes extinction into landscape-level extirpation,184

a set of one-time, irreversible events at the end of local population declines. To do so, our185

proposed method assigns extinction (extirpation) dates to every cell of a pre-determined186

grid meant to represent the species’ range or the landscape of interest. In the non-random187

model, for every grid cell, the k nearest neighbor sightings are taken from the centroid,188

and are run through a specified extinction date estimator. In the random model, a dataset189

of N nearest neighbors are generated for each cell, and estimators are run with a set of190

k records randomly selected without replacement. (Sampling with replacement produces191

severely distorted estimates, as even one or two extra late sightings can produce centuries-192

late extinction dates.)193

SEDEs use the same sighting datasets as typical EDEs, with the only additional194

requirement that every record be georeferenced (i.e., sightings are recorded as presence195

records with date and locality). Depending on data availability, essentially any EDE196

could be implemented in this modeling framework. Here, we illustrate how SEDEs can197

be constructed using the optimal linear estimator (OLE), and Solow & Beet’s (2014)198

Bayesian method for incorporating sighting uncertainty (SB), which we selected based199

on their ubiquity in the literature, and their demonstrated strong performance relative200

to other methods. As for non-spatial implementations, the OLE method should only201

be used for certain sightings (Roberts et al., 2010), while the SB model is designed for202

use with mixed-certainty data (a common problem in the sighting record of extinct or203

putatively-extinct species).204

In that they reconstruct range contraction over time, SEDEs are, a at least in princi-205

ple, temporally-dynamic species distribution models: though they use no environmental206

covariates to make predictions (as “ecological niche models” do), they similarly make a207

model-based inference about the geographic range of a species based on known occurrence208

points. For species that are extinct, SEDEs can be used to describe the spatiotemporal209
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process of extinction, which may give clues as to the mechanism. For example, a panzootic210

disease might spread in a spatial wavefront from a single location (Lips et al., 2008); in211

contrast, habitat loss or land use change might correlate in a patchwork fashion with local212

extinctions across a landscape (Preston et al., 2012). In addition to reconstructing the213

pattern of extinction across a landscape, SEDEs can be used to identify possible zones of214

persistence for species with an uncertain extinction status. Even if a species-level EDE215

suggests a low probability of persistence, spatially-subsetted data may indicate potential216

areas with low support for extinction. This can be done by identifying areas where either217

the OLE or SB model estimates T̂E later than the present year. (The confidence intervals218

for the OLE method could also be used for this purpose, though we discourage this as219

anything other than an extremely conservative estimate, given how wide these confidence220

intervals tend to be; see Clements et al. [2013]). Additionally, the SB model can also221

be used to calculate the posterior probability of persistence for a given year, based on a222

given set of prior assumptions. Zones of potential persistence can then be delineated with223

a desired confidence level.224

3 The R Package225

We developed the R package spatExtinct to implement SEDEs for use in historical ecol-226

ogy and conservation research. The package utilizes some pre-existing functions, including227

the OLE implementation in the package sExtinct (Clements, 2013); and includes some228

new functions, including an R implementation of Solow & Beet’s model, which has been229

previously published (Carlson et al., 2017b) but is streamlined in our package.230

3.1 Estimating Spatial Extinction Surfaces231

The primary function of spatExtinct is to spatially interpolate the models we describe232

above, using spatially-explicit occurrence data. The OLE and SB models are respectively233

implemented in the spat.OLE and spat.SB functions. These methods are fairly com-234

putationally intensive and work on a cell-by-cell basis, but the package includes options235

for parallelization and adaptive estimation (with a set convergence threshold to reduce236

the number of runs). The only required data to run the basic functions are: (1) a data237

frame with sightings’ decimal longitude and latitude, date (year or any other internally-238
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consistent way of denoting time), and scored sighting quality (expert-verified, plausible, or239

uncertain); and (2) a raster onto which extinction dates can be projected. For the raster,240

local grids can be used based on the area of interest; or, if researchers are interested in241

patterns across a species’ entire range, we suggest that species distribution models can be242

used to define appropriate boundaries for interpolation, as they can be generated from the243

same sighting data used by the package, and provide an intuitive constraint on outermost244

area of occupancy. The format in which spatExtinct uses data is readily usable by245

species distribution modeling packages like dismo. (Hijmans et al., 2013)246

3.2 Estimating Zones of Persistence247

The primary utility of spatExtinct is estimating the last likely year of presence on248

a cell-by-cell basis across landscapes. However, there is one readily-obvious extension249

for species that may not be entirely extinct: spatExtinct can be used multiple ways250

to identify potential zones of persistence. This can be done by using spat.OLE and251

spat.SB to find areas where T̂E is later than the current year, but we have also included252

an explicitly probabilistic function spat.SB.probs that estimates the probability of253

persistence in a set year. That approach would work based on a hypothesis test that the254

date of extinction TE is not before the current time T , where assuming some significance255

cutoff α, we delineate cells (i, j) for which256

P (TE 6≤ T )ij ≥ α (17)

For instance, if we wanted to identify areas where there is at least a 10% chance the257

species is not yet extinct, we would set α = 0.10 and map all cells meeting that criterion.258

We suggest that this more effective, or at the least more subjective on the user end, than259

simply cutting off by T̂E 6≤ T .260

We also suggest that researchers can easily interface SEDEs and ENMs, as a simple261

but powerful approach to optimizing rediscovery efforts with almost no a priori assump-262

tions. Ecological niche models represent the probability of a species’ presence relative to263

a given set of environmental variables, and so a combined probability of rediscovery can264

be conceptualized as265
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P (rediscovery) ≈ P (TE 6≤ T |suitable) ∗ P (suitable) (18)

This relative approach does not represent a “true probability” of rediscovery, but can be266

used to prioritize search efforts in areas of suitable habitat with plausible undiscovered267

populations, or to guide reserve design for cryptic or rarely-sighted species, for example.268

The implementation of that process is particularly flexible; for instance, we can identify269

at least three approaches:270

1. Using a thresholded SDM as the base grid for spat.OLE or spat.SB and identi-271

fying zones where (T̂E)ij 6≤ T272

2. Using a thresholded SDM as the base grid for spat.SB.probs and identifying273

zones where P (TE 6≤ T )ij ≥ α274

3. Using raw ENM suitability values and spat.SB.probs on the same landscape,275

taking the product to approximate P (rediscovery), and identifying areas where the276

combined probability is above either a pre-determined threshold or a quantile (e.g.277

mapping the top 10% of sites as hotspots of possible rediscovery).278

We include no direct tool to interface ENMs and SEDEs, not due to lack of feasibility,279

but because we stress the importance of careful user-end precision in the implementa-280

tion of ENMs. All methods for ecological niche modeling are sensitive to sampling bias,281

pseudoabsence generation, environmental variable set selection, and parameter tuning de-282

cisions (Elith & Graham, 2009; Merow et al., 2014); rather than include an automated283

workflow, we encourage researchers to make careful decisions about these factors when284

building species distribution models for rare, vulnerable species. We include an example285

here using these methods to identify possible zones of rediscovery for Bachman’s warbler.286

4 Applications287

We briefly discuss two examples of how our method can be implemented, to illustrate288

the flexibility of the package, and the relevance in both historical ecology and current289

conservation work.290
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4.1 Simulations: Validation and Parameterization291

We use simulated extinctions to demonstrate the relative accuracy of the methods as a292

function of data availability and model implementation. Simulations were run on an n293

by n square landscape where extinction dates occur on a linear gradient from 5 to 5n294

(e.g. a 10 by 10 landscape has cell extinction dates ranging from 5 to 50). For every295

year in the interval of [5, 5n), the landscape is constrained to areas where populations are296

extant; p “sighting” points are generated on that surface within every year for a total of297

p(5n−1) points (see Figure 1 for an example). As a consequence of this, later extinctions298

slightly autocorrelate with denser sightings. We used simulated datasets, iterated over299

adjustable model parameters, to develop an optimization protocol for spatExtinct.300

We present our analyses with two accuracy measures: correlation of estimated and real301

extinction surfaces (is the pattern clear?), and mean squared error between estimated302

and real surfaces (how precise are extinction date estimates?). More advanced tuning303

issues are discussed in the Supporting Information, but here, we examine a handful of304

basic questions:305

4.1.1 Which model performs best?306

Independent of randomization method, we found that Solow & Beet’s method consistently307

performed better, with higher correlation coefficients (which were fairly insensitive to pa-308

rameterization, unlike the OLE method) and lower error rates (Figure 2). Consequently,309

for both pattern estimation and explicit extinction date estimates, the SB method is likely310

a better one than the OLE (especially if working with mixed-certainty data; see below).311

However, there are still cases where researchers may want to use the OLE method; most312

notably, if attempting to delineate regions with a minor chance of persistence, the char-313

acteristically wide upper confidence bound of the OLE method (Clements et al., 2013) is314

a strength of the approach. We suggest the best practice is simply to present both, with315

necessary disclaimers about known levels of accuracy.316

4.1.2 How sensitive are models to parameterization?317

For the OLE method, we found that error rates were minimized around k ≈ 7, with limited318

randomization (N = k + 1) or no randomization (N = k + 0); however, an intermediate319

level of randomization (N = k + 5) significantly improved correlations with real surfaces320
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(Figure 2). For the SB method, smallest levels of k minimized error, with increasing321

levels of randomization similarly leading to decreasing accuracy across k values. Again,322

intermediate levels of randomization (N = k + 5) maximized correlations, especially at323

low k values. Across methods, we suggest this indicates an unsurprising tradeoff between324

pattern inference and the precision of estimates: randomization helps smooth estimated325

surfaces, and makes them easier to interpret, but at the cost of local accuracy. For326

the most precise estimates (e.g. delineating potential zones of persistence), researchers327

should select a small neighborhood size and limited or no randomization. In contrast, mild328

randomization may help researchers accurately interpret the spatial patterns of extinction329

over landscapes.330

4.1.3 How does sample size affect accuracy?331

Higher sample sizes consistently improve model performance (Figure 3). For both the332

OLE (A,B) and SB (C,D) method, accuracy plateaus noticeably around 40-50 points.333

Correlations plateau more substantially, whereas increased sample size continues to reduce334

estimates’ error. However, we note that the error of SB estimates around 15-25 points335

is still comparable to that of OLE estimates around 50 or more, highlighting its better336

performance as an estimator.337

4.1.4 Can mixed certainty sighting data be effectively utilized?338

The most significant strength of the Solow & Beet (2014) model is the capacity to use339

mixed-certainty sighting data, including potentially invalid sightings, to improve extinc-340

tion date estimates. We show that this benefit still exists when the Solow & Beet models341

are spatially interpolated (see Figure 4); our analyses suggest that a higher number342

invalid points only severely reduces model performance when valid points have a high343

uncertainty rate (see Supporting Information). However, a quality control option that344

removes uncertain sightings exists in the OLE functions, for cases where researchers may345

want to include OLE analyses despite uncertain sightings. This method, while imprecise,346

still vastly improves the OLE’s performance compared to the dramatic negative impact347

of inaccurate sightings on unrestricted OLE analyses.348
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4.2 Case Study: Bachman’s Warbler349

To illustrate the potential use of spatExtinct for estimating zones of plausible per-350

sistence, we provide an example using sightings of Bachman’s warbler, a species that is351

widely believed extinct despite recent, extremely controversial “sightings.” The species352

is believed to have experienced sharp population declines between 1910 and 1930, pos-353

sibly due to habitat loss in the southern United States or its overwintering grounds in354

Cuba (due in part to hurricane damage); however, as for many species, the precise rea-355

sons for decline are controversial and unresolved (Stevenson, 1972; Pimm & Askins, 1995;356

Huntington & Barbour, 1936; Hamel, 2011).357

Unlike higher-profile North American extinct species like the ivory-billed woodpecker358

(Campephilus principalis) or passenger pigeon (Ectopistes migratorius), the status of359

Bachman’s warbler has received comparatively little attention. To the extent of our360

knowledge, the only modeling study published on the subject suggested an extinction361

date of 1961 (upper 95% CI: 1967) based on physical evidence only, and 1964 (95% CI:362

1967) including expert-opinion sightings (Elphick et al., 2010); however, controversial and363

unverifiable sightings have been reported as recently as 2001 (Chamberlain, 2003). It is364

not implausible that Bachman’s warbler could go undetected for several years, given the365

species’ biology. One naturalist’s report from the early 20th Century notes: “These birds366

are very hard to detect...in fact I cannot recall a bird that moves as rapidly as Bachman’s367

Warbler does in the breeding season” (Chamberlain, 2003). On the other hand, recent368

sightings are particularly dubious given the risk of misidentification, as the species has a369

strong resemblance to the extant hooded warbler (Wilsonia citrina).370

To evaluate the status of the species, we assembled a georeferenced dataset contain-371

ing all readily-accessible known records of Bachman’s warbler in the continental United372

States. Sightings were sorted into an established set of three categories (Solow & Beet,373

2014; Carlson et al., 2017b): confirmed sightings with physical evidence, expert-supported374

sightings, and unconfirmed but plausible sightings. We developed a species distribution375

model following a similar protocol to Burgio et al. (2017), using the package ENMeval376

to tune maximum entropy (MaxEnt) species distribution models for the data. We used377

the data to develop a spatial surface for the probability of persistence in 2017 using the378

spat.SB.probs function in spatExtinct, and we use the to estimate the probabil-379

ity of persistence in 2017 based on certain and uncertain sightings. (See Supporting380
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Information for more details on data collection and model implementation.)381

In total we found 118 usable historical records of Bachman’s warbler (64 certain and382

verifiable sightings, 46 strongly plausible expert sightings, and 8 implausible or novice383

sightings). Sightings of Bachman’s warbler dated back as far as the species’ taxonomic384

description in 1833, and as late as the last certain sighting in 1959, with both sightings385

recorded near Charleston, South Carolina. The last unconfirmed “sighting” in 2001 was386

recorded in Congaree Swamp Park in Richland, South Carolina (Chamberlain, 2003).387

After georeferencing, there were 86 spatiotemporally unique sightings recorded, at 47388

unique localities. While this is sufficient for species distribution modeling (Proosdij et al.,389

2016), it is still astonishing how limited data are for a charismatic North American species390

that only went (probably) extinct in the last century. (Georeferenced data were limited391

enough that we suggest interpreting the below analyses as more of a vignette for how a392

study could be designed using spatExtinct, than a definitive appraisal of the status393

of the species.)394

The hypothesis that Bachman’s warbler has been extinct for several years was sup-395

ported by both the optimal linear estimator (all data: T̂E = 2004, 95% CI = (2001,2012);396

certain sightings only: T̂E = 1965, 95% CI = (1959,1987)) and the Solow & Beet method397

(model 1: T̂E = 1978, p(TE ≥ 2017) = 0.011; model 2: T̂E = 1963, p(TE ≥ 2017) =398

1.5 × 10−5). Without any spatial information, these results suggest the species can be399

safely presumed extinct in 2018; in fact, these estimates suggest the species was probably400

already extinct by 1967, when it was included on the first federal listing of endangered401

species in the United States (the “Class of ’67”). The species is still listed despite its402

apparent extinction; in 2015, the U.S. Fish and Wildlife Service most recently reassessed403

the species, maintaining its Endangered status and explaining, “We considered recom-404

mending delisting Bachmans warbler; however, because Bachmans warbler is difficult to405

detect and identify (Chamberlain 2003) and the lack of formal extensive search efforts406

over the last 27 years, considerable uncertainty remains as to its status.” (Sisson, 2015)407

Our species distribution model agreed with prior expert knowledge, suggesting a broad408

geographic division between a coastal Atlantic range, and an inland range following the409

Mississippi and Ohio River basins, tracking the distribution of baldcypress (Taxodium410

distichum) in the South. Previous work suggested these ranges were continuous and411

connected above the Gulf of Mexico, though our model suggests the ranges may have been412
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more separate (Hamel, 2011). The spatial Solow & Beet model suggested that, despite413

one late uncertain sighting in northern Louisiana, the western range of the species was414

likely gone by the early 20th century (Figure 5). The model suggested persistence in the415

1960s or 1970s along the coast of Georgia and South Carolina, as well as (surprisingly)416

around the Chesapeake Bay. These estimates still suggest that the species was likely417

extinct by the mid-1970s.418

As a final test, we used the probability of persistence (p(TE 6≤ 2017), generated with419

the spat.SB.probs function) to test the hypothesis of local extinction and verify the420

minimal chance of rediscovery. In some of the most uncertain and probably error-prone421

areas (West Virginia and North Carolina) the probability was surprisingly high. However,422

the model still found broad regions with a small but nontrivial (5-20%) posterior proba-423

bility of presence. Using the species distribution model as an additional probability filter,424

we found three major areas of potential rediscovery: coastal Georgia and South Carolina,425

the Mississippi delta in Louisiana, and a broad patch from North Carolina up through426

Maryland (Figure 6).427

The idea that there might be undiscovered, isolated populations of Bachman’s warbler428

in the southeastern United States—especially in South Carolina—is far from new. Official429

U.S. Fish & Wildlife Service documentation still lists the species as having a range along430

coastal South Carolina and the southernmost end of Florida (the latter being part of its431

migratory range; USFWS [2018]). In the mid-1970s, a series of unconfirmed sightings were432

reported in the I’on Swamp in coastal South Carolina. (Shuler, 1976) After unconfirmed433

but plausible sightings in 2000 and 2001 in Congaree National Park, the park was surveyed434

in 2002 without any success (Chamberlain, 2003), suggesting that even if there were late435

persistent populations in the area, they are likely gone by today.436

The prediction of a possible zone of persistence further north is surprising, given the437

absence of late plausible sightings, but could possibly merit further investigation. Most438

promising, in our opinion, is the possible zone of persistence in the Mississippi basin.439

While the swamps of Congaree have been searched, remaining baldcypress swamps along440

the Mississippi could just as plausibly harbor an undiscovered remnant population; the441

2015 FWS assessment noted optimistically that efforts to rediscover the ivory-billed wood-442

pecker in similar habitats might incidentally lead to the warbler’s rediscovery. (Sisson,443

2015) Given that Bachman’s warbler was inconspicuous at best, it may also be possible444
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that the bird, if it still persists, will be found in unexpected areas. SDMs have been proven445

useful in finding new populations of other elusive species (Menon et al., 2010; Williams446

et al., 2009; Fois et al., 2015), so it may well be worth looking in the areas suggested447

by our models. But all evidence suggests the species is likely extinct, and the decision448

to keep searching for Bachman’s warbler may also detract from other, more promising449

conservation efforts—and the decision to continue the search depends at least as much on450

values as it does on model results. (Akçakaya et al., 2017; Carlson et al., 2017b; David &451

Davis, 2017; Jackson, 2006)452

5 Discussion453

Here, we have introduced the idea of a spatially-explicit approach to extinction date454

estimation, and an associated R package. Spatial extinction date estimation makes an455

important conceptual link between extinction date estimation and species distribution456

modeling, and when parameterized correctly, we suggest that our method can be readily457

used to reconstruct the spatial pattern of range loss during a species’ extinction. Provided458

that sufficient data is available, we suggest that spatial extinction date estimation has459

tremendous promise as a new tool for assessing the status of putatively-extinct species460

like Bachman’s warbler, even when some sightings are suspected to be invalid.461

Spatial extinction date estimation is a new method, and our simulations suggest it462

works fairly well. However, the computational approach to approximation we use in the463

spatExtinct package would likely be outperformed by an analytic approach that adapts464

a model like Solow & Beet’s to explicitly consider spatial autocorrelation in extinction465

dates and spatial heterogeneity in sighting rates. (In fact, we hypothesize that much466

of the temporal heterogeneity in sighting rates that these models account find could be467

attributed to the combination of spatial heterogeneity and species’ contracting ranges.)468

We encourage the development of superior modeling approaches, and similarly encourage469

caution interpreting the results of any model. Users of the method, and the R package,470

should carefully consider the bias different models contribute: for example, Solow & Beet’s471

model 1 is strongly influenced by the last uncertain sighting and predicts persistence more472

commonly than model 2, which is more strongly influenced by the last certain sighting473

(Kodikara et al., 2018). The relative accuracy of the two models is influenced by the474
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proportion of uncertain sightings that are invalid, something users of our method should475

strongly consider.476

After the extinction of a species, the amount of biological information that can be477

recovered rapidly declines, especially for poorly-documented recent extinctions without478

a detailed specimen or fossil record. As the sixth mass extinction accelerates due to479

forces like climate change, an increasing amount of information on global biodiversity is480

irretrievably lost (Barnosky et al., 2011; Ceballos et al., 2015; Urban, 2015). In particularly481

data-deficient situations, the mechanism of an extinction may be uncertain. In some cases,482

a species’ status as extinct may itself be uncertain. Spatially-interpolated extinction date483

estimators, and their implementation in the spatExtinct package, are designed to484

address both of these data-limited situations. We suggest, though, that the strongest use485

of SEDEs is alongside other tools. Statistical methods like ENMs hold clear promise as486

a companion to SEDEs, but sighting data can only accomplish so much. Using these487

tools alongside specimen work, however, is likely to be especially powerful as a path of488

inquiry. Identifying cause of death from specimens may help explain mortality patterns489

and develop informative population models (Cunningham & Daszak, 1998), and stable490

isotope work can help recover key information about changing patterns of diet or migration491

(Hilderbrand et al., 1996). All of these methods in conjunction can help develop a more492

robust perspective on extinction as a spatiotemporal process, rather than a single event493

in time, benefiting work in historical ecology and conservation biology alike.494
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Figure 1: An example simulation and implementation of spatial extinction date
estimation. Simulations run with 5 sightings per year over a 20 by 20 landscape. OLE
and S&B models parameterized using best practices tuning described in the main text,
randomized over 100 iterations.

26

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/279679doi: bioRxiv preprint first posted online Mar. 11, 2018; 

http://dx.doi.org/10.1101/279679
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.55

0.60

0.65

0.70

0.75

5 6 7 8 9 10
k

C
or

re
la

tio
n

N 1 5 100
A

30000

35000

40000

45000

50000

55000

5 6 7 8 9 10
k

M
SE

B

0.80

0.85

0.90

0.95

5 6 7 8 9 10
k

C
or

re
la

tio
n

C

10000

15000

20000

25000

30000

5 6 7 8 9 10
k

M
SE

D

N 1 5 100

N 1 5 100 N 1 5 100

Figure 2: Optimizing over neighborhood size. Accuracy metrics are given for the
spatial OLE (A,B) and spatial SB (C,D) models, averaged across 20 simulations for each
k,N pair. We calculated the average correlation between estimated extinction surfaces
and true extinction dates (A,C), and the mean squared error of those estimates (B,D),
for different neighborhood sizes (k) and levels of randomization (N , where “1” indicates
N = k + 1).
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Figure 3: Sample size improves estimates. Results are averaged across 20 simulations
for each sample size level (each with 10 resampling instances for samples within a given
simulation), with neighborhood size for the OLE (k = 7, N = 12; A,B) and SB (k = 5,
N = 10; C,D) models taken from the best practices determined in Figure 2.
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a. b. c.

d. e.

Figure 4: Accounting for mixed-certainty, mixed-accuracy sightings. (A) An
example simulated dataset over 50 years; 3 valid sightings are recorded per year (black),
20% of which are recorded as “uncertain” (blue circles), while 4 erroneous sightings are
recorded total (blue triangles), with randomly assigned dates. Spatial OLE (k = 7,
N = 12) without quality control (B) is highly prone to misinterpretation, versus spatial
OLE with quality control (C), which noticeably improves predictions but also limits data
available for use. Solow & Beet’s model (k = 5, N = 10) includes mixed certainty data
and performs noticeably better, regardless of selecting model 1 (D) or model 2 (E).
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Figure 5: Mapping Bachman’s Warbler with limited occurrence data. (A) Sight-
ing records (n = 118). (B) MaxEnt ecological niche model. (C) Extinction date recon-
structed using Solow & Beet’s model 2, on recommended best practices settings. (D)
Variance in Solow & Beet estimates (higher variance means more uncertain estimates).
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Figure 6: Where are the odds of rediscovery highest? (A) Probability of persistence
based on Bayesian hypothesis testing in Solow & Beet model (extinction date only). (B)
Combined probability of rediscovery (product of probability of persistence from EDE and
environmental suitability from ENM).
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