
Predicting wildlife hosts of betacoronaviruses for SARS-CoV-2 sampling prioritization 1 

 2 

Daniel J. Becker1,♰, Gregory F. Albery2,♰, Anna R. Sjodin3, Timothée Poisot4, Tad A. Dallas5, Evan 3 

A. Eskew6,7, Maxwell J. Farrell8, Sarah Guth9, Barbara A. Han10, Nancy B. Simmons11, and Colin J. 4 

Carlson12,13,* 5 

 6 

 7 

 8 

♰ These authors share lead author status 9 

* Corresponding author: colin.carlson@georgetown.edu 10 

 11 

1. Department of Biology, Indiana University, Bloomington, IN, U.S.A. 12 

2. Department of Biology, Georgetown University, Washington, D.C., U.S.A. 13 

3. Department of Biological Sciences, University of Idaho, Moscow, ID, U.S.A. 14 

4. Université de Montréal, Département de Sciences Biologiques, Montréal, QC, Canada. 15 

5. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, U.S.A. 16 

6. Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, 17 

NJ, U.S.A. 18 

7. Department of Biology, Pacific Lutheran University, Tacoma, WA, U.S.A. 19 

8. Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada. 20 

9. Department of Integrative Biology, University of California Berkeley, Berkeley, CA, U.S.A.  21 

10. Cary Institute of Ecosystem Studies, Millbrook, NY, U.S.A. 22 

11. Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural 23 

History, New York, NY, U.S.A. 24 

12. Center for Global Health Science and Security, Georgetown University Medical Center, 25 

Washington, D.C., U.S.A. 26 

13. Department of Microbiology and Immunology, Georgetown University Medical Center, 27 

Washington, D.C., U.S.A.  28 

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 23, 2020. . https://doi.org/10.1101/2020.05.22.111344doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.111344
http://creativecommons.org/licenses/by-nd/4.0/


Abstract. 29 

 30 

Despite massive investment in research on reservoirs of emerging pathogens, it remains 31 

difficult to rapidly identify the wildlife origins of novel zoonotic viruses. Viral surveillance 32 

is costly but rarely optimized using model-guided prioritization strategies, and predictions 33 

from a single model may be highly uncertain. Here, we generate an ensemble of seven 34 

network- and trait-based statistical models that predict mammal-virus associations, and 35 

we use model predictions to develop a set of priority recommendations for sampling 36 

potential bat reservoirs and intermediate hosts for SARS-CoV-2 and related 37 

betacoronaviruses. We find nearly 300 bat species globally could be undetected hosts of 38 

betacoronaviruses. Although over a dozen species of Asian horseshoe bats (Rhinolophus 39 

spp.) are known to harbor SARS-like viruses, we find at least two thirds of betacoronavirus 40 

reservoirs in this bat genus might still be undetected. Although identification of other 41 

probable mammal reservoirs is likely beyond existing predictive capacity, some of our 42 

findings are surprisingly plausible; for example, several civet and pangolin species were 43 

highlighted as high-priority species for viral sampling. Our results should not be over-44 

interpreted as novel information about the plausibility or likelihood of SARS-CoV-2’s 45 

ultimate origin, but rather these predictions could help guide sampling for novel 46 

potentially zoonotic viruses; immunological research to characterize key receptors (e.g., 47 

ACE2) and identify mechanisms of viral tolerance; and experimental infections to quantify 48 

competence of suspected host species.  49 
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Main text. 50 

 51 

Coronaviruses are a diverse family of positive-sense, single-stranded RNA viruses, found widely 52 

in mammals and birds1. They have a broad host range, a high mutation rate, and the largest 53 

genomes of any RNA viruses, but they have also evolved mechanisms for RNA proofreading and 54 

repair, which help to mitigate the deleterious effects of a high recombination rate acting over a 55 

large genome2. Consequently, coronaviruses fit the profile of viruses with high zoonotic potential. 56 

There are seven human coronaviruses (two in the genus Alphacoronavirus and five in 57 

Betacoronavirus), of which three are highly pathogenic in humans: SARS-CoV, SARS-CoV-2, and 58 

MERS-CoV. These three are zoonotic and widely agreed to have evolutionary origins in bats3–6. 59 

 60 

Our collective experience with both SARS-CoV and MERS-CoV illustrate the difficulty of tracing 61 

specific animal hosts of emerging coronaviruses. During the 2002–2003 SARS epidemic, SARS-62 

CoV was traced to the masked palm civet (Paguma larvata)7, but the ultimate origin remained 63 

unknown for several years. Horseshoe bats (family Rhinolophidae: Rhinolophus) were implicated 64 

as reservoir hosts in 2005, but their SARS-like viruses were not identical to circulating human 65 

strains4. Stronger evidence from 2017 placed the most likely evolutionary origin of SARS-CoV in 66 

Rhinolophus ferrumequinum or potentially R. sinicus8. Presently, there is even less certainty in the 67 

origins of MERS-CoV, although spillover to humans occurs relatively often through contact with 68 

dromedary camels (Camelus dromedarius). A virus with 100% nucleotide identity in a ~200 base 69 

pair region of the polymerase gene was detected in Taphozous bats (family Emballonuridae) in 70 

Saudi Arabia9; however, based on spike gene similarity, other sources treat HKU4 virus from 71 

Tylonycteris bats (family Vespertilionidae) in China as the closest-related bat virus10,11. Several 72 

bat coronaviruses have shown close relation to MERS-CoV, with a surprisingly broad geographic 73 

distribution from Mexico to China12,13,14,15. 74 

 75 

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome 76 

coronavirus-2 (SARS-CoV-2), a novel virus with presumed evolutionary origins in bats. Although 77 

the earliest cases were linked to a wildlife market, contact tracing was limited, and there has been 78 

no definitive identification of the wildlife contact that resulted in spillover nor a true “index case.” 79 

Two bat viruses are closely related to SARS-CoV-2: RaTG13 bat CoV from Rhinolophus affinis 80 

(96% identical overall), and RmYN02 bat CoV from Rhinolophus malayanus (97% identical in one 81 

gene but only 61% in the receptor binding domain and with less overall similarity)6,16. The 82 

divergence time between these bat viruses and human SARS-CoV-2 has been estimated as 30-70 83 

years17, suggesting that the main host(s) involved in spillover remain unknown. Evidence of viral 84 

recombination in pangolins has been proposed but is unresolved17. SARS-like betacoronaviruses 85 

have been recently isolated from Malayan pangolins (Manis javanica) traded in wildlife 86 

markets18,19, and these viruses have a very high amino acid identity to SARS-CoV-2, but only show 87 

a ~90% nucleotide identity with SARS-CoV-2 or Bat-CoV RaTG1320. None of these host species 88 

are universally accepted as the origin of SARS-CoV-2 or a progenitor virus, and a “better fit” wildlife 89 

reservoir could likely still be identified. However, substantial gaps in betacoronavirus sampling 90 
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across wildlife limit actionable inference about plausible reservoirs and intermediate hosts for 91 

SARS-CoV-221. 92 

 93 

Identifying likely reservoirs of zoonotic pathogens is challenging22. Sampling wildlife for the 94 

presence of active or previous infection (i.e., seropositivity) represents the first stage of a pipeline 95 

for proper inference of host species23, but sampling is often limited in phylogenetic, temporal, and 96 

spatial scale by logistical constraints24. Given such restrictions, modeling efforts can play a 97 

critical role in helping to prioritize pathogen surveillance by narrowing the set of plausible 98 

sampling targets25. For example, machine learning approaches have generated candidate lists of 99 

likely, but unsampled, primate reservoirs for Zika virus, bat reservoirs for filoviruses, and avian 100 

reservoirs for Borrelia burgdorferi26–28. In some contexts, models may be more useful for 101 

identifying which host or pathogen groups are unlikely to have zoonotic potential29. However, 102 

these approaches are generally applied individually to generate predictions. Implementation of 103 

multiple modeling approaches collaboratively and simultaneously could reduce redundancy and 104 

apparent disagreement at the earliest stages of pathogen tracing and help advance modeling 105 

work by addressing inter-model reliability, predictive accuracy, and the broader utility (or 106 

inefficacy) of such models in zoonosis research.  107 

 108 

Because SARS-like viruses (subgenus Sarbecovirus) are only characterized from a small number 109 

of bat species in publicly available data, current modeling methods are poorly tailored to exactly 110 

infer their potential reservoir hosts. In this study, we instead conduct two predictive efforts that 111 

may help guide the inevitable search for known and future zoonotic coronaviruses in wildlife: (1) 112 

broadly identifying bats and other mammals that may host any Betacoronavirus and (2) 113 

specifically identifying species with a high viral sharing probability with the two Rhinolophus 114 

species carrying the closest known wildlife relatives of SARS-CoV-2.  To do this, we developed a 115 

standardized dataset of mammal-virus associations by integrating a previously published 116 

mammal-virus dataset30 with a targeted scrape of all GenBank coronavirus accessions and their 117 

associated hosts. Our final dataset spanned 710 host species and 359 virus genera, including 118 

107 mammal hosts of betacoronaviruses as well as hundreds of other (non-coronavirus) 119 

association records. We harmonized our host-virus data with a mammal phylogenetic supertree31 120 

and over 60 ecological traits of bat species27,32,33. Using these standardized data, six subteams 121 

generated seven predictive models of host-virus associations, including four network-based and 122 

three trait-based approaches. These efforts generated seven ranked lists of suspected bat hosts 123 

of betacoronaviruses and five ranked lists for other mammals. Each ranked list was scaled 124 

proportionally and consolidated in an ensemble of recommendations for betacoronavirus 125 

sampling and broader eco-evolutionary research (ED Figure 1).  126 

 127 

In our ensemble, we draw on two popular approaches to identify candidate reservoirs and 128 

intermediate hosts of betacoronaviruses. Network-based methods estimate a full set of “true” 129 

unobserved host-virus interactions based on a recorded network of associations (here, pairs of 130 

host species and associated viral genera). These methods are increasingly popular as a way to 131 

identify latent processes structuring ecological networks34–36, but they are often confounded by 132 
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sampling bias and can only make predictions for species within the observed network (i.e., those 133 

that have available virus data; in-sample prediction). In contrast, trait-based methods use 134 

observed relationships concerning host traits to identify species that fit the morphological, 135 

ecological, and/or phylogenetic profile of known host species of a given pathogen and rank the 136 

suitability of unknown hosts based on these trait profiles28,37. These methods may be more likely 137 

to recapitulate patterns in observed host-pathogen association data (e.g., geographic biases in 138 

sampling, phylogenetic similarity in host morphology), but they more easily correct for sampling 139 

bias and can predict host species without known viral associations (out-of-sample prediction).  140 

 141 

Predictions of bat betacoronavirus hosts derived from network- and trait-based approaches 142 

displayed strong inter-model agreement within-group, but less with each other (Figure 1A,B). In-143 

sample, we identified bat species across a range of genera as having the highest predicted 144 

probabilities of hosting betacoronaviruses, distributed in distinct families in both the Old World 145 

(e.g., Hipposideridae, several subfamilies in the Vespertilionidae) and the New World (e.g., 146 

Artibeus jamaicensis from the Phyllostomidae; Figure 1C). Out-of-sample, our multi-model 147 

ensemble more conservatively limited predictions to primarily Old World families such as 148 

Rhinolophidae and Pteropodidae (Figure 1D). Of the 1,037 bat hosts not currently known to host 149 

betacoronaviruses, our models identified between 1 and 720 potential hosts based on a 10% 150 

omission threshold (90% sensitivity). Applying this same threshold to our ensemble predictions, 151 

we identified 291 bat species that are likely undetected hosts of betacoronaviruses. These 152 

include approximately half of bat species in the genus Rhinolophus not currently known to be 153 

betacoronavirus hosts (30 of 61), compared to 16 known hosts in this genus. Given known roles 154 

of rhinolophids as hosts of SARS-like viruses, our results suggest that SARS-like virus diversity 155 

could be undescribed for around two-thirds of the potential reservoir bat species. 156 

 157 

Our multi-model ensemble predicted undiscovered betacoronavirus bat hosts with striking 158 

geographic patterning (Figure 2). In-sample, the top 50 predicted bat hosts were broadly 159 

distributed and recapitulated observed patterns of bat betacoronavirus hosts in Europe, parts of 160 

sub-Saharan Africa, and southeast Asia, although our models also predicted greater-than-161 

expected richness of likely bat reservoirs in the Neotropics and North America. In contrast, the 162 

top out-of-sample predictions clustered in Vietnam, Myanmar, and southern China. 163 

 164 

Because only trait-based models were capable of out-of-sample prediction, the differences in 165 

geographic patterns of our predictions likely reflect distinctions between the network- and trait-166 

based modeling approaches, which we suggest should be considered qualitatively different lines 167 

of evidence. Network approaches proportionally upweight species with high observed viral 168 

diversity, recapitulating sampling biases largely unrelated to coronaviruses (e.g., frequent 169 

screening for rabies lyssaviruses in vampire bats, which have been sampled in a comparatively 170 

limited capacity for coronaviruses14,38–40). Highly ranked species may also have been previously 171 

sampled without evidence of betacoronavirus presence; for example, Rhinolophus luctus and 172 

Macroglossus sobrinus from China and Thailand, respectively, tested negative for 173 

betacoronaviruses, but detection probability was limited by small sample sizes41–43. In contrast, 174 
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trait-based approaches are constrained by their reliance on phylogeny and ecological traits, and 175 

the use of geographic covariates made models more likely to recapitulate existing spatial 176 

patterns of betacoronavirus detection (i.e.,  clustering in southeast Asia). However, their out-of-177 

sample predictions are, by definition, inclusive of unsampled hosts44, which potentially offer 178 

greater return on viral discovery investment.  179 

 180 

Multi-model ensemble predictions also clustered taxonomically along parallel lines. Applying a 181 

graph partitioning algorithm (phylogenetic factorization) to the bat phylogeny45, we found that in-182 

sample predictions were on average lowest for the Yangochiroptera (Figure 3). This makes 183 

intuitive sense, because this clade does not include the groups known to harbor the majority of 184 

betacaronaviruses detected in bats (e.g., Rhinolophus, Hipposideridae). Out-of-sample 185 

predictions were lower in the New World superfamily Noctilionoidea and the emballonurids, 186 

whereas several subfamilies of Old World fruit bats46, including the Rousettinae, Cynopterinae, 187 

and Eidolinaei, had higher mean probabilities of betacoronavirus hosting. Lastly, our ensemble 188 

also identified the Rhinolophus genus as having greater mean probabilities (ED Table 1).  189 

 190 

These clade-specific patterns of predicted probabilities across extant bats could be particularly 191 

applicable for guiding future surveillance. On the one hand, betacoronavirus sampling in 192 

southeast Asian bat taxa (especially the genus Rhinolophus) may have a high success of viral 193 

detection but may not improve existing bat sampling gaps47. On the other hand, discovery of novel 194 

betacoronaviruses in Neotropical bats or Old World fruit bats could significantly revise our 195 

understanding of the bat-virus association network. Such discoveries would be particularly 196 

important for global health security, given the surprising identification of a MERS-like virus in 197 

Mexican bats14 and the likelihood that post-COVID pandemic preparedness efforts will focus 198 

disproportionately on Asia despite the near-global presence of bat betacoronaviruses. 199 

 200 

Although our ensemble model of potential bat betacoronavirus reservoirs generated strong and 201 

actionable predictions, our mammal-wide predictions were largely uninformative. In particular, 202 

minimal inter-model agreement (ED Figure 2) indicated a lack of consistent, biologically 203 

meaningful findings. Major effects of sampling bias were apparent from the top-ranked species, 204 

which were primarily domestic animals or well-studied mesocarnivores (ED Figure 2B). 205 

Phylogenetic factorization mostly failed to find specific patterns in prediction (ED Table 2): in-206 

sample, mean predictions primarily confirmed betacoronavirus detection in the remaining 207 

Laurasiatheria (e.g., ungulates, carnivores, pangolins, hedgehogs, shrews), although nested 208 

clades of marine mammals (i.e., cetaceans) were less likely to harbor these viruses, as expected 209 

given betacoronavirus epidemiology and their predominance in terrestrial mammals. Our 210 

mammal predictions thus reflect a combination of detection bias and poor performance of 211 

network methods on limited data that likely signals the limits of existing predictive capacity. Our 212 

dataset contained only 30 non-bat betacoronavirus hosts, many of which were identified during 213 

sampling efforts following the first SARS outbreak7. Although the laurasiatherians are likely to 214 

include more potential intermediate hosts than other mammals, the high diversity of this clade 215 

restricts insights for sampling prioritization, experimental work, or spillover risk management. 216 
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 217 

Given the unresolved origins of SARS-CoV-2 and significant motivation to identify other SARS-like 218 

coronaviruses and their reservoir hosts for pandemic preparedness21, we further explored our 219 

only model that could generate out-of-sample predictions for all mammals48. This model uses 220 

geographic distributions and phylogenetic relatedness to estimate viral sharing probability. 221 

Where one or more (potential) hosts are known, these sharing patterns can be interpreted to 222 

identify probable reservoir hosts48. Because Rhinolophus affinis and R. malayanus host viruses 223 

that are closely related to SARS-CoV-26,16, we used their predicted sharing patterns to identify 224 

possible reservoirs of sarbecoviruses. In doing so, we aimed to work around a major data 225 

limitation: fewer than 20 sarbecovirus hosts were recorded in our dataset, a sample size that 226 

would preclude most modeling approaches.  227 

 228 

For both presumed bat host species of sarbecoviruses, the most probable viral sharing hosts 229 

were again within the Laurasiatheria. Although bats—especially rhinolophids—unsurprisingly 230 

assumed the top predictions given phylogenetic affinity with known hosts (ED Table 3, ED Figure 231 

3), several notable patterns emerged in the rankings of other mammals. Pangolins (Pholidota) 232 

were disproportionately likely to share viruses with R. affinis and R. malayanus (ED Figure 4); the 233 

Sunda pangolin (Manis javanica) and Chinese pangolin (M. pentadactyla) were in the top 20 234 

predictions for both reservoir species (ED Table 4). This result is promising given the much-235 

discussed discovery of SARS-like betacoronaviruses in M. javanica18. The Viverridae were also 236 

disproportionately well-represented in the top predictions (ED Figure 5), most notably the masked 237 

palm civet (Paguma larvata), which was identified as an intermediate host of SARS-CoV49,50 (ED 238 

Table 4).  239 

 240 

The ability of our virus sharing model to capture known patterns of coronavirus hosts using only 241 

two predictor variables is encouraging, and implies that mammal phylogeography has played a 242 

predictable role in historical betacoronavirus spillover. Moreover, these findings lend credibility 243 

to other predictions of SARS-CoV-2 sharing patterns and host susceptibility. Many of the model’s 244 

top predictions were mustelids (i.e., ferrets and weasels), and the most likely viral sharing partner 245 

for both Rhinolophus species was the hog badger (Arctonyx collaris; ED Table 4). Taken together 246 

with reports of SARS-CoV-2 spread in mink farms51, these results highlight the relatively 247 

unexplored potential for mustelids to serve as betacoronavirus hosts. Similarly, identification of 248 

several deer and Old World monkey taxa as high-probability hosts in our clade-based analysis (ED 249 

Figure 3) meshes with the observation of high binding of SARS-CoV-2 to ACE2 receptors in cervid 250 

deer and primates52. Felids (especially leopards) also ranked relatively high in our viral sharing 251 

predictions (ED Table 4, ED Figure 5), which is of particular interest given reports of SARS-CoV-2 252 

susceptibility among cats53. However, we caution that this model was the only approach in our 253 

ensemble that could generate out-of-sample prediction across mammals, and therefore its 254 

predictions lacked confirmation (and filtering of potential spurious results) by other models that 255 

were designed and implemented independently. 256 

 257 
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Several limitations apply to our work, most notably the difficulty of empirically verifying 258 

predictions. Although some virological studies have incidentally tested specific hypotheses (e.g., 259 

filovirus models and bat surveys27,54, henipavirus models and experimental infections23,55), model-260 

based predictions are nearly never subject to systematic verification or post-hoc efforts to identify 261 

and correct spurious results. Greater dialogue between modelers and empiricists is necessary to 262 

systematically confront the growing set of predicted host-virus associations with experimental 263 

validation or field observation. Scotophilus heathii, Hipposideros larvatus, and Pteropus lylei, all 264 

highly predicted bat species in our out-of-sample rankings, have been reported positive for 265 

betacoronaviruses in the literature43,56; however, resulting sequences were not annotated to 266 

genus level in GenBank. These results support the idea that our models identified relevant targets 267 

correctly but also highlight an evident limitation of the workflow. Whereas an automated 268 

approach was the ideal method to systematically compile over 30,000 samples on the timescales 269 

commensurate with ongoing efforts to trace SARS-CoV-2 in wildlife, we suggest this discrepancy 270 

highlights the need for careful virological work downstream at every stage of the modeling 271 

process, including the development of hybrid manual-automated data pipelines. 272 

 273 

Additionally, overcoming underlying model biases that are driven by historical sampling regimes 274 

will require coordinated efforts in field study design. Bat sampling for betacoronaviruses has 275 

prioritized viral discovery39,40,57–59, but limitations in the spatial and temporal scale (and 276 

replication) of field sampling have likely created fundamental gaps in our understanding of 277 

infection dynamics in bat populations24. Limited longitudinal sampling of wild bats suggests 278 

betacoronavirus detection is sporadic over time and space56,60, implying strong seasonality in 279 

virus shedding pulses61. Carefully tailored spatial and temporal sampling efforts for priority taxa 280 

identified here, within the Rhinolophus genus or other high-prediction bat clades, will be key to 281 

identifying the environmental drivers of betacoronavirus shedding from wild bats and possible 282 

opportunities for contact between bats, intermediate hosts, and humans.  283 

 284 

Future field studies will undoubtedly be important to understand viral dynamics in bats but are 285 

inherently costly and labor-intensive. These efforts are particularly challenging during a pandemic, 286 

as many scientific operations have been suspended, including field studies of bats in some 287 

regions to limit possible viral spillback from humans. However, various alternative efforts could 288 

both advance basic virology and allow testing model predictions. General open access to viral 289 

association records, including GenBank accessions and the upcoming release of the USAID 290 

PREDICT program’s data, could answer open questions and allow updates to our sampling 291 

prioritization (including potentially modeling at subgenus level, with greater data availability). 292 

Museum specimens and historical collections from diverse research programs also offer key 293 

opportunities to retrospectively screen samples from bats and other mammals for 294 

betacoronaviruses and to enhance our understanding of complex host-virus interactions 62. 295 

Large-scale research networks, such as GBatNet (Global Union of Bat Diversity Networks) and its 296 

member networks, could provide diverse samples and ensure proper partnerships and equitable 297 

access and benefit sharing of knowledge across countries63,64. Whole-genome sequencing 298 

through initiatives such as the Bat1K Project (https://bat1k.ucd.ie) would facilitate fundamental 299 
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and applied insights into the immunological pathways through which bats can apparently harbor 300 

many virulent viruses (including but not limited to betacoronaviruses) without displaying clinical 301 

disease65,66.  302 

 303 

To expedite such work, we have made our binary predictions of host-virus associations for all 304 

seven models and all 1,000+ bat species publicly available (Supplementary Table 1). Such results 305 

are provided both in the spirit of open science and with the hope that future viral detection, 306 

isolation, or experimental studies might confirm some of these predictions or rule out others55. In 307 

ongoing collaborative efforts, we aim to consolidate results from field studies that address these 308 

predictions (e.g., serosurveys) and to track Genbank submissions to expand the known list of 309 

betacoronavirus hosts. In several years, we intend to revisit these predictions as a post-hoc test 310 

of model validation, which would represent the first effort to test the performance of such models 311 

and assess their contribution to basic science and to pandemic preparedness. 312 

 313 

It is crucial that our predictions be interpreted as a set of hypotheses about potential host-virus 314 

compatibility rather than strong evidence that a particular mammal species is a true reservoir for 315 

betacoronaviruses. In particular, susceptibility is only one aspect of host competence22,67, which 316 

encompasses the diverse genetic and immunological processes that mediate within-host 317 

responses following exposure68. SARS-CoV-2 in particular may have a broad host range52, given 318 

hypothesized compatibility with the ACE2 receptor in many mammal species, but this only adds 319 

to the extreme caution with which any data should be used to implicate a potential wildlife 320 

reservoir of the virus, given that rapid interpretation of inconclusive molecular evidence has likely 321 

already generated spurious reservoir identifications69,70. Future efforts to isolate live virus from 322 

wildlife or to experimentally show viral replication would more robustly test whether predicted 323 

host species actually play a role in betacoronavirus maintenance in wildlife55.  324 

 325 

Without direct lines of virological evidence, we note that our sampling prioritization scheme also 326 

does not implicate any given mammal species in SARS-CoV-2 transmission to humans. Care 327 

should be taken to communicate this, especially given the potential consequences of 328 

miscommunication for wildlife conservation. The bat research community in particular has 329 

expressed concern that negative framing of bats as the source of SARS-CoV-2 will impact public 330 

and governmental attitudes toward bat conservation71. In zoonotic virus research on bats, studies 331 

often over-emphasize human disease risks72 and rarely mention ecosystem services provided by 332 

these animals 73. Skewed communication can fuel negative responses against bats, including 333 

indiscriminate culling (i.e., reduction of populations by selective slaughter)74, which has already 334 

occured in response to COVID-19 even outside of Asia (where spillover occurred)75. 335 

 336 

To minimize potential unintended negative impacts for bat conservation, public health and 337 

conservation responses should act in accordance with substantial evidence suggesting that 338 

culling has numerous negative consequences, not only threatening population viability of 339 

threatened bat species in shared roosts76 but also possibly increasing viral transmission within 340 

the very species that are targeted77,78. Instead, bat conservation programs and long-term 341 
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ecological studies are necessary to help researchers understand viral ecology and find 342 

sustainable solutions for humans to live safely with wildlife. From another perspective, policy 343 

solutions aimed at limiting human-animal contact could potentially prevent virus establishment 344 

in novel species (e.g., as observed in mink farms51), especially in wildlife that may already face 345 

conservation challenges (e.g., North American bats threatened by an emerging disease, white-346 

nose syndrome74,79). At least four bat species with confirmed white-nose syndrome symptoms or 347 

that can be infected by the fungal pathogen (Eptesicus fuscus, Myotis lucifugus, M. 348 

septentrionalis, Tadarida brasiliensis) are in our list of the 291 bat species most likely to be 349 

betacoronavirus hosts, and both Myotis species have already been heavily impacted by this fungal 350 

epidemic with over 90% reductions in their populations80.  351 

 352 

Substantial investments are already being planned to trace the wildlife origins of SARS-CoV-2. 353 

However, the intermediate progenitor virus may never be isolated from samples 354 

contemporaneous with spillover, and it may no longer be circulating in wildlife.  MERS-CoV 355 

circulates continuously in camels81 and SARS-CoV persisted in civets long enough to seed 356 

secondary outbreaks49,50, but the limited description of Pangolin-CoV symptoms suggests high 357 

mortality,  potentially indicating a more transient epizootic such as Ebola die-offs in red river hogs 358 

(Potamochoerus porcus)18. In lieu of concrete data, our study provides no additional evidence 359 

implicating any particular species—or any particular pathway of spillover (e.g., wildlife trade, 360 

consumption of hunted animals)—as more or less likely. No specific scenario can be confirmed 361 

or rigorously interrogated by ecological models, and we explicitly warn against misinterpretation 362 

or misuse of our findings as evidence for adjacent policy decisions. Although policies that focus 363 

on particular potential reservoir species or target human-wildlife contact could reduce future 364 

spillovers, they will have a negligible bearing on the ongoing pandemic, as SARS-CoV-2 is highly 365 

transmissible within humans (e.g., unlike MERS-CoV or other zoonoses that are sustained in 366 

people by constant reintroduction). SARS-CoV-2 is likely to remain circulating in human 367 

populations until a vaccine is developed, regardless of immediate actions regarding wildlife. 368 

COVID-19 response must be informed by the best consensus evidence available and prioritize 369 

solutions that address immediate reduction of transmission through public health and policy 370 

channels. Meanwhile, we hope our proposed wildlife sampling priorities will help increase the 371 

odds of preventing the future emergence of novel betacoronaviruses.  372 

 373 
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Figures 383 

 384 

Figure 1. An ensemble of predictive models facilitates identification of likely betacoronavirus 385 

bat hosts. The pairwise Spearman’s rank correlations between models’ ranked species-level 386 

predictions were generally substantial and positive (A,B). Models are arranged in decreasing 387 

order of their mean correlation with other models. In-sample predictions, expressed as host 388 

species’ proportional rank (0 is the most likely host from a given model, 1 is the least likely 389 

host), varied significantly due to the uncertainty of network approaches (C). In contrast, species’ 390 

proportional ranks were tightly correlated across out-of-sample predictive approaches, which 391 

relied on species traits (D). Each line represents a different bat species’ proportional rank 392 

across models. The ten species with the highest mean proportional ranks across all models are 393 

highlighted in shades of purple. 394 

 395 

 396 
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Figure 2. Species richness of known and suspected betacoronavirus bat hosts. Known hosts of 397 

betacoronaviruses (top) are found worldwide, but particularly in southern Asia and southern 398 

Europe. The top 50 predicted bat hosts with viral association records (middle) are mostly 399 

Neotropical, including several species of vampire bats. In contrast, the top 50 de novo bat host 400 

predictions based on phylogeny and ecological traits (bottom) are mostly clustered in Myanmar, 401 

Vietnam, and southern China, with none in the Neotropics or North America. 402 

 403 

  404 
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Figure 3. Phylogenetic distribution of predicted bat and mammal hosts of betacoronaviruses. 405 

Bar height indicates mean predicted rank across the model ensemble (higher values = lower 406 

proportional rank score, more likely to be a host) and black indicates known betacoronavirus 407 

hosts. Colored regions indicate clades identified by phylogenetic factorization as significantly 408 

different in their predicted rank compared to the paraphyletic remainder; those clades more 409 

likely to contain a host are shown in red, whereas those less likely to contain a host are shown 410 

in blue. Results are displayed for bats and all mammals separately, stratified by in- and out-of-411 

sample predictions. Numbers reference clade names, species richness, and mean predicted 412 

ranks as described in Extended Data Tables 1 and 2.  413 

 414 

  415 
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 416 

Methods. 417 

 418 

The underlying conceptual aim of this study was to produce and synthesize several different 419 

models that predict and rank candidate reservoir species—each with different methods, 420 

assumptions, and framings—and to rapidly synthesize these into a consensus list. We broadly 421 

structured our study around two modeling targets: (1) produce rankings of likely bat hosts of 422 

betacoronaviruses and (2) identify potential non-bat mammal hosts. We developed a novel 423 

dataset that merged existing knowledge about the broader mammal-virus network with targeted 424 

data collection about coronaviruses; implemented seven modeling methods; synthesized these 425 

into an ensemble; and post-hoc identified taxonomic patterns in prediction using phylogenetic 426 

factorization. 427 

 428 

Host-Virus Association Data 429 

 430 

Entries were downloaded from GenBank on March 27th 2020 using the following search terms: 431 

Coronavirus, Coronaviridae, Orthocoronavirinae Alphacoronavirus, Betacoronavirus, 432 

Gammacoronavirus, and Deltacoronavirus. Data were sorted using a Python script that saved all 433 

available metadata regarding accession number, division, submission date, entry title, organism, 434 

genus, genome length, host classification, country, collection date, PubMed ID, journal containing 435 

associated publication, publication year, genome completeness, and the gene sequenced. The 436 

dataset was cleaned to remove duplicate entries, using GenBank accession number, and entries 437 

that did not correspond to viral sequences, using GenBank division. After cleaning, 31,473 entries 438 

remained, of which 25,628 had metadata regarding host species. 439 

 440 

Data from GenBank were merged with the Host-Pathogen Phylogeny Project (HP3) dataset30. The 441 

HP3 dataset consists of 2,805 associations between 754 mammal hosts and 586 virus species, 442 

compiled from the International Committee on Taxonomy of Viruses (ICTV) database, and 443 

manually cleaned over a period of five years. Data collection on HP3 began in 2010 and has been 444 

static since 2017, but it still represents the most complete dataset on the mammal virome 445 

published with a high standard of data documentation. Several recent studies have used the HP3 446 

dataset to produce statistical models of viral sharing or zoonotic potential29,48,82, making it a 447 

comparable reference for a multi-model ensemble study.  448 

 449 

Because of naming inconsistencies both within GenBank and between the two datasets (HP3 and 450 

GenBank), we used a two-step pipeline for taxonomic reconciliation. Viral names were matched 451 

to the ICTV 2019 master species list, up to the sub-genus level. Host species names were 452 

matched against GBIF using their species API with an automated Julia script, and processed to a 453 

fully cleaned set of names. This led to an harmonized dataset representing a global list of 454 

mammal-virus associations, from which the bat-coronavirus data can be extracted for 455 

downstream and specific modeling efforts. Because the HP3 dataset used an older version of the 456 

ICTV master list, and because not all host names in the GenBank metadata could be matched by 457 
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the GBIF species API (or could be solved unambiguously to the species level), some host-virus 458 

interactions were lost; this reinforces the need to careful data curation of taxonomic metadata if 459 

they are to enable and support predictive pipelines. 460 

 461 

 462 

Predictor Data  463 

 464 

Phylogeny  465 

 466 

We used a supertree of extant mammals to unify modeling approaches incorporating host 467 

phylogeny31. Although more recent mammal supertrees exist, we used this particular phylogeny 468 

for consistency with trait datasets and several of the modeling frameworks included in our 469 

ensemble. We manually matched select bat species names between our edge list and this 470 

particular phylogeny. This included reverting any Dermanura to their former Artibeus designation 471 

(i.e., D. phaeotis, D. cinerea, D. tolteca)83, switching Tadarida species to either Mops or Chaerophon 472 

species (i.e., Tadarida condylura to Mops condylurus, Tadarida plicata to Chaerephon plicatus, 473 

Tadarida pumila to Chaerephon pumilus)84, and renaming Myotis pilosus to the more recent Myotis 474 

ricketti. Chaerephon pusillus was considered its own species but is now synonymous with 475 

Chaerephon pumilus84. Minor discrepancies between virus data and our phylogeny were also 476 

corrected (Hipposideros commersonii to Hipposideros commersoni [although more recently 477 

changed to Macronycteris commersoni], Rhinolophus hildebrandti to Rhinolophus hildebrandtii, 478 

Neoromicia nana to Neoromicia nanus). In other cases, some recently revised genera in our edge 479 

list were modified to match former genera in the mammal supertree: Parastrellus hesperus to 480 

Pipistrellus hesperus, and Perimyotis subflavus to Pipistrellus subflavus85. Lastly, some names in 481 

our edge list missing from the mammal supertree represent former subspecies being raised to 482 

full species rank, and names were reverted accordingly: Artibeus planirostris to Artibeus 483 

jamaicensis, Miniopterus fuliginosus to Miniopterus schreibersii, Triaenops afer to Triaenops 484 

persicus, and Carollia sowelli to Carollia brevicauda. Although we recognize that these are each 485 

now recognized as distinct species, in all cases our synonymized names are thought to be either 486 

sister taxa or very closely related. 487 

 488 

Ecological traits 489 

 490 

We used a previously published dataset of 63 ecological traits describing the morphology, life 491 

history, biogeography, and diet of 1,116 bat species. These data are drawn from a combination 492 

of PanTHERIA32, EltonTraits33, and the IUCN Red List range maps, and were previously cleaned in 493 

a study producing predictions of bat reservoirs of filoviruses27. Four redundant variables (two for 494 

human population density, mean potential evapotranspiration in range, and body mass) were 495 

eliminated prior to analyses, favoring variables with higher completeness. 496 

 497 

Correction for sampling bias 498 

 499 
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To correct for sampling bias, in the style of several previous studies30,82, we used the number of 500 

peer-reviewed citations available on a given host as a measure of scientific sampling effort. We 501 

used the R package easyPubMed to scrape the number of citations in PubMed returned when 502 

searching each of the 1,116 bat names in the trait data on April 10, 2020. 503 

 504 

Modeling Approaches 505 

 506 

Our team produced an ensemble of seven statistical models (ED Tables 5 and 6), and applied 507 

them to generate a predictive set of seven models for bats and five for other mammals. Four use 508 

a network-theoretic component (k-nearest neighbors, linear filtering, trait-free plug-and-play, and 509 

scaled phylogeny), while three primarily used ecological traits as predictors (boosted regression 510 

trees, Bayesian additive regression trees, and neutral phylogeographic).  511 

 512 

All eight approaches were used to generate predictions about potential bat hosts of 513 

betacoronaviruses. A subset of six were used to recommend potential non-bat mammal hosts of 514 

betacoronaviruses (k-nearest neighbor, linear filtering, scaled phylogeny, trait-free plug-and-play, 515 

and neutral phylogeographic). We did not use trait-based models to predict non-bat hosts, 516 

because assigning pseudoabsences to the vast majority (~3500 or more) of mammal species 517 

would likely lead to largely uninformative predictions, weighed against the 109 known 518 

betacoronavirus hosts (79 bats and 30 other mammals). 519 

 520 

Network model 1: k-Nearest Neighbors recommender 521 

 522 

We follow the methodology previously developed for the recommendation of species feeding 523 

interactions86. This method builds a recommender system internally based on the k-NN algorithm, 524 

under which candidate hosts are recommended for a virus from a pool constituted by the hosts 525 

of the k viruses with which it has the greatest overlap. Overlap (host sharing) is measured using 526 

Tanimoto similarity, which is the cardinality of the intersection of two sets divided by the 527 

cardinality of their union. To obtain the pairwise similarity between two viruses, this divides the 528 

number of shared hosts by the cumulative number of hosts. The k nearest neighbors of a virus 529 

are the k other viruses with which it has the highest Tanimoto similarity. 530 

 531 

Hosts are then recommended by counting how many times they appear in these k neighbors, a 532 

quantity that ranges from 1 to k. We can impose arbitrary cutoffs by limiting the 533 

recommendations to the hosts that occur in at least k, k-1, etc, viruses. Previous leave-one-out 534 

validation of this model revealed that it is particularly effective for viruses with a reduced number 535 

of hosts, which is likely to be the case for emerging viruses. Furthermore, the performance of this 536 

model was not significantly improved by the addition of functional traits, making it acceptable to 537 

run on the association data only. 538 

 539 
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This model has been run two times; first, by measuring the similarity of viruses, and 540 

recommending hosts; second, by measuring the similarity of hosts, and recommending viruses. 541 

In all cases, only results for betacoronaviruses are reported. 542 

 543 

The outcome of this model should be subject to caution, as leave-one-out validation revealed that 544 

the success rate (i.e. ability to recover one interaction that has been removed) remained lower 545 

than 50% even when using k=8, and dropped as low as 5% when using k=1 (the nearest-neighbor 546 

algorithm). This strongly suggests that the dataset of reported host-virus associations is 547 

extremely incomplete; therefore, the identification of the nearest neighbors can be biased by 548 

under-reported interactions, and this can result in noise in the prediction. This noise can be 549 

particularly important when the kNN technique operates on viruses, of which the bat dataset has 550 

only 15. 551 

 552 

Network-based model 2: Linear filter recommender 553 

 554 

Following Stock et al.87, we used a previously developed linear filter to infer potential missing 555 

interactions. This recommender system assumes that networks tend to be self-similar, and use 556 

this information to generate a score for an un-observed interaction that is a linear combination of 557 

the status of the interaction (relative weight of 1/4), relative degree of host and virus, and of the 558 

observed connectance of the network (all with relative weights of 1); as we are concerned with 559 

ranking interactions as opposed to examining the absolute value of the score, the penalization 560 

coefficient associated to the interaction being presumed absent could be omitted with no change 561 

in the ranking, but has been set to a low value instead. The scores returned by the linear filter are 562 

not directly related to the probability of the interaction existing in this context, but higher scores 563 

still indicate interactions that are more likely to exist. Indeed, known hosts of betacoronavirus 564 

typically scored higher. 565 

 566 

We used the zero-one-out approach to assess the performance of this model on the entire 567 

datasets. In all cases, non-interactions ranked lower than positive interactions even when entirely 568 

removing the penalization coefficient from the linear filter parameters, which suggests that the 569 

network structure (degree and connectance) is capturing a lot of information as to which species 570 

can interact. Note that as opposed to the k-NN method outlined above, the linear filter is 571 

symmetrical, i.e. it captures the properties of both host and virus at once. 572 

 573 

Network-based model 3: Plug and play   574 

 575 

For network problems, the “plug and play” model is a statistical approach that formulates Bayes’ 576 

theorem for link prediction around the conditional density of traits of known associations 577 

compared to traits of every possible association in a network. The conditional density function is 578 

measured by using non-parametric kernel density estimators (implemented with the R package 579 

np), and the conditional ratio between them is used to estimate link “suitability”, a scale-free ratio. 580 

Compared to other machine learning methods that fit to training data iteratively, plug and play is 581 
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comparatively simple, and directly infers the most likely extensions of observed patterns in data. 582 

The plug and play was originally developed to forecast missing links in host-parasite networks36, 583 

but has since been used to model species distributions88 and predict the global spread of human 584 

infectious diseases89. We used this model here to estimate suitability of host-virus interactions 585 

by first modeling the entire estimated network of host-virus interaction suitability, and ranking 586 

hosts that are not infected by betacoronaviruses by their estimated suitability for 587 

betacoronaviruses.  588 

 589 

The “plug and play” model is trained using either matched pairs of host and pathogen ecological, 590 

morphological, or phylogenetic traits36, or by using a latent approach89 which considers the mean 591 

similarity of pathogens in their host ranges and the mean similarity of hosts in their pathogen 592 

communities as ‘traits’. We decided to use the latent approach, as host trait data was far more 593 

available than viral trait data. Further, the taxonomic scale considered for host (species) and virus 594 

(genus) differed, making the resolution of potential trait data different enough to potentially 595 

confound trait-based approaches in this modeling framework.  596 

 597 

Relative suitability of a host-virus association, as estimated by the “plug and play” model,  is 598 

formulated as a density ratio estimation problem. The suitability of a host-virus association is 599 

quantified as the quotient of the distribution of latent trait values when an association was 600 

recorded over the distribution of all the latent trait values. As an attempt to control for sampling 601 

effort of mammal and bat host species, we included PubMed citation counts for host species (as 602 

described above) in the estimation of host-virus suitability. We explored host-pathogen suitability 603 

using the entire mammal-virus associations dataset, to maximize the available information on 604 

the network’s structure, and ranked host-pathogen pairs by their relative suitability value. From 605 

the final predictions, we subset out bat-specific predictions. When predicting, we set citation 606 

counts to the mean of training data, as a sampling bias correction. 607 

 608 

Network-based model 4: Scaled-phylogeny  609 

 610 

We apply the network-based conditional model of Elmasri et al.90 for predicting missing links in 611 

bipartite ecological networks. The full model combines a hierarchical Bayesian latent score 612 

framework which accounts for the number of interactions per taxon, and a dependency among 613 

hosts based on evolutionary distances. To predict links based on evolutionary distance, the 614 

probability of a host-parasite interaction is taken as the sum of evolutionary distances to the 615 

documented hosts of that parasite. This allocates higher probabilities when a few closely related 616 

hosts, or many distantly related hosts interact with a parasite. In this way phylogenetic distances 617 

are combined with individual affinity parameters per taxa to model the conditional probability of 618 

an interaction. 619 

 620 

In ecological studies, it is common to use time-scaled phylogenies to quantify evolutionary 621 

distance among species91. We may use these fixed evolutionary distances for link prediction, but 622 

parasite taxa are known to be more or less constrained by phylogenetic distances among hosts92. 623 
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Further, phylogenies are hypotheses about evolutionary relationships and have uncertainties in 624 

the topology and relative distances among species93. Rather than treating phylogenetic distances 625 

as fixed, Elmasri et al.90 re-scale the phylogeny by applying a macroevolutionary model of trait 626 

evolution. While any evolutionary model that re-scales the covariance matrix may be used, we use 627 

the early-burst model, which allows evolutionary change to accelerate or decelerate through 628 

time94. This different emphasis to be placed on deep versus recent host divergences when 629 

predicting links.  630 

 631 

We apply the model to a network of associations among host species and viral genera, and the 632 

mammal supertree, which allows us to leverage information from across the network to predict 633 

undocumented bat-betacoronavirus associations. We fit sets of models, applying both the full 634 

model, and the phylogeny-only model to both the bat-viral genera associations, and the mammal-635 

viral genera associations. For each data-model combination we fit the model using ten-fold cross-636 

validation holding out links for which there is a minimum of two observed interactions. The 637 

posterior interaction matrices resulting from each of the ten models are then averaged to 638 

generate predictions for all links in the network, with betacoronaviruses subset to generate the 639 

ensemble predictions. 640 

 641 

To assess predictive performance, we attempted to predict the held out interactions, and 642 

calculated AUC scores by thresholding predicted probabilities per fold, and taking an average 643 

across the 10 folds. In addition to AUC, we also assessed the model based on the percent of 644 

documented interactions accurately recovered. For the bat-viral genera data the full model 645 

resulted in an average AUC of 0.82 and recovered an average of 90.1% of held out interactions, 646 

while the phylogeny-only model showed increased AUC (0.86), but a decreased proportion of held-647 

out interactions recovered (84.5%). Interestingly, the models for bat-virus genera associations 648 

had marginally worse predictive performance compared to the same models run on the larger 649 

network of mammal-virus associations (full model: AUC 0.88, 84.4% positive interactions 650 

recovered; phylogeny-only model:AUC: 0.88, 88.8% positive interactions recovered),  indicating 651 

that predicting bat-betacoronavirus associations may benefit from including data on non-bat 652 

hosts. The models also estimated the scaling parameter (eta) of the early-burst model to be 653 

positive (average eta=7.92 for the full model run on the bat subset), indicating accelerating 654 

evolution compared to the input tree (ED Figure 6). This means that recent divergences are given 655 

more weight than deeper ones for determining bat-viral genera associations, which is consistent 656 

with recent work on viral sharing48,95. 657 

 658 

Trait-based model 1: Boosted regression trees 659 

 660 

Previous work has been highly successful in predicting zoonotic reservoirs using a combination 661 

of taxonomic, ecological, and geographic traits as predictors. This approach has been previously 662 

used to identify wildlife hosts of filoviruses27,96, flaviviruses28,97,  henipaviruses23, Borrelia 663 

burgdorferi26, to predict mosquito vectors of flaviviruses98, and to predict rodent reservoirs and 664 

tick vectors of zoonotic viruses37,99. These approaches treat the presence of a specific virus (or 665 
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genus of viruses) or a zoonotic pathogen as an outcome variable, with negative values given for 666 

species not known to be hosts (pseudoabsences), and use machine learning to identify the 667 

characteristics that predispose animals to hosting pathogens of concern. By predicting the 668 

probability a given pseudoabsence is a false negative, the method can infer potential undetected 669 

or undiscovered host species. 670 

 671 

This approach has almost exclusively been implemented using boosted regression trees (BRT), 672 

a classification and regression tree (CART) machine learning method that became popular a 673 

decade ago for species distribution modeling.100 Boosted regression trees develop an ensemble 674 

of classification trees which iteratively explain the residuals of previous trees, up to a fixed tree 675 

depth (usually between 3 and 5 splits). The incorporation of boosting allows the model, as it is fit, 676 

to progressively better explain poorly-fit cases within training data.  677 

 678 

We used boosted regression trees to identify trait profiles that predict bat hosts of 679 

betacoronaviruses, including all trait predictors from the trait database that met baseline 680 

coverage (< 50% missing values) and variation (< 97% homogenous) thresholds. For all model 681 

fitting, we specified a Bernoulli error distribution for our binary response variable and applied 10-682 

fold cross validation to prevent overfitting (R package gbm). We started by fitting a global model 683 

to our full dataset, first specifying learning rate = 0.01 (shrinks the contribution of each tree to the 684 

model) and tree complexity = 4 (controls tree depth) as per default values and subsequently 685 

tuning to minimize cross validation error.  686 

 687 

We reduced the variable set by calling the gbm.simp() function, which computes and compares 688 

the mean change in cross validation error (deviance) produced by dropping different sets of least-689 

contributing predictors. The final simplified model included 23 variables, plus citation counts, 690 

which we added to correct for sampling bias. 691 

         692 

We applied bootstrapping resampling methods to estimate uncertainty, using our tuned model to 693 

fit 1000 replicate models. For each model, training sets were assembled by randomly selecting 694 

with replacement 79 bat-coronavirus associations from the set of reported bat hosts and 79 695 

pseudoabsences. Trained models were used to generate relative influence coefficients for trait 696 

predictors and coronavirus host probabilities across all bat species. Partial dependence plots 697 

display relative influence coefficients and bootstrapped confidence intervals for the top ten 698 

contributing trait predictors. The medians of host probabilities were ranked and used to identify 699 

the top ten candidate host species. When predicting, we set citation counts to the mean of training 700 

data, as a sampling bias correction. 701 

 702 

Trait based model 2: Bayesian additive regression trees 703 

 704 

A similar workflow to trait-based model 1 was implemented using Bayesian additive regression 705 

trees (BART), an emerging machine learning tool that has similarities to more popular methods 706 

like random forests and boosted regression trees. BART adds several layers of methodological 707 
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innovation, and performs well in bakeoffs with other advanced machine learning methods. 708 

Several features make BART very convenient for modeling projects like these, including several 709 

easy-to-use implementations in R packages, built-in capacity to impute and predict on missing 710 

data, and easy construction of variable importance and partial dependence plots.  711 

 712 

Like other classification and regression tree methods, BART assigns the probability of a binary 713 

outcome variable by developing a set of classification trees - in this case, a sum-of-trees model - 714 

that split data (“branches”) and assign values to terminal nodes (“leaves”). Whereas other similar 715 

methods generate uncertainty by adjusting data (e.g. random forests bootstrap training data and 716 

fit a tree to each bootstrap; boosted regression trees are usually implemented with iterated 717 

training-test splits to generate confidence intervals), BART generates uncertainty using an MCMC 718 

process. An initial sum-of-trees model is fit to the entire dataset, and then rulesets are adjusted 719 

in a limited and stochastic set of ways (e.g., adding a split; switching two internal nodes), with the 720 

sum-of-trees model backfit to each change. After a burn-in period, the cumulative set of sum-of-721 

trees models is treated as a posterior distribution. This has some advantages over other methods, 722 

like boosted regression trees or random forests. In particular, posterior width directly measures 723 

model uncertainty (rather than approximating it by permuting training data), and a single model 724 

can be run (instead of an ensemble trained on smaller subsets of training data), allowing the 725 

model to use the full training dataset all at once.101 726 

 727 

Unlike many Bayesian machine learning methods, BART is easily implemented out-of-the-box, due 728 

to a limited set of customization needs. Three main priors control the fitting process: one usually-729 

uniform prior on variable importance, one two-parameter negative power distribution on tree 730 

depth (preventing overfitting), and an inverse chi-squared distribution on residual variance. A set 731 

of well-performing priors from the original BART study102 are widely used across R 732 

implementations for out-of-the-box settings, but can be further adjusted relative to modeling 733 

needs. In this study, we implemented BART models using a Dirichlet prior for variable importance 734 

(DART), a specification that is designed for situations with high dimensionality data that probably 735 

reflects a small number of true informative predictors. This often produces a much more reduced 736 

model without going through a stepwise variable selection process, which can be slow and very 737 

subject to stochasticity.101 738 

 739 

We implemented this approach using the BART package in R, using the bat-virus association 740 

dataset to generate an outcome variable, and the bat traits dataset as predictors. BART models 741 

were implemented with 200 trees and 10,000 posterior draws, using every trait feature that was 742 

at least 50% complete and < 97% homogenous (taken from TBM1).  743 

 744 

We tried four total implementations, based on two decisions: BART uncorrected and corrected 745 

for citation counts (BART-u, BART-c), and DART uncorrected and corrected for citation counts 746 

(DART-u, DART-c). All four models performed well, with little variation in predictive power 747 

measured by the area under the receiver operator curve calculated on training data (BART-u: AUC 748 

= 0.93; BART-c: AUC = 0.93; DART-u: AUC = 0.93; DART-c: 0.90; ED Figure 7). Across all models, 749 
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spatial variables had a high importance, including some regionalization (extent of range) and 750 

some variables capturing larger geographic range sizes, as did a diet of invertebrates (pulling out 751 

the phylogenetic signal of insectivorous bats; ED Figure 8). 752 

 753 

All models identified a number of “false negative” hosts that would be suitable based on a 10% 754 

false negative classification threshold for known betacoronavirus hosts (implemented with the R 755 

package ‘PresenceAbsence’). BART-u identified 217 missing hosts, BART-c identified 279 756 

missing hosts, DART-u identified 222 missing hosts, and DART-c identified 384 missing hosts, 757 

suggesting that this model most penalized overfitting as intended. As a result, we considered this 758 

model the most rigorous and powerful for inference, and used DART-c in the final model 759 

ensemble. We predicted across all 1,040 bats without recorded betacoronavirus associations, 760 

and ranked predicted probability. When predicting, we set citation counts to the mean of training 761 

data, as a sampling bias correction. 762 

 763 

Trait based model 3: Phylogeographic neutral model 764 

 765 

We used a previously published pairwise viral sharing model48 to predict potential 766 

betacoronavirus hosts based on the sharing patterns of known hosts in a published dataset 30. 767 

We used a generalised additive mixed model (GAMM), which was fitted in the first half of 2019 768 

using the mgcv package, with pairwise binary viral sharing (0/1 denoting if a species shares at 769 

least one virus) as a response variable. Explanatory variables include pairwise proportional 770 

phylogenetic distance and geographic range overlap (taken from the IUCN species ranges), with 771 

a multi-membership random effect to control for species-level sampling biases. The model was 772 

then used to predict the probability that a given species pair share at least one virus across 4196 773 

placental mammals with available data, producing a predicted viral sharing network that 774 

recapitulates a number of known macroecological patterns, as well as predicting reservoir hosts 775 

with surprising accuracy48. Subsetting this predicted sharing matrix, we listed the rank order of 776 

hosts most likely to share with all known betacoronavirus hosts in our datasets.  777 

 778 

Rhinolophus-specific implementation of Trait-based model 3 779 

 780 

We then repeated this process with sharing patterns of Rhinolophus affinis and R. malayanus 781 

specifically. Given the strong phylogenetic effect, the top 139 predictions were bat species: 782 

predominantly rhinolophids and hipposiderids. The top 20 predictions for both R. malayanus and 783 

R. affinis are displayed in ED Table 3 and 4. Notable predictions included the hog badger Arctonyx 784 

collaris (Carnivora: Mustelidae), which was examined for SARS-CoV antibodies in 2003 and is 785 

reported in wildlife markets7,103; a selection of civet cats (Carnivora: Viverridae) including Viverra 786 

species; the binturong (Arctitis binturong); and the masked palm civet (Paguma larvata), the latter 787 

of which were implicated in the chain of emergence for SARS-CoV49,50; and pangolins (Pholidota: 788 

Manidae) including Manis javanica and Manis pentadactyla, which have been hypothesised to be 789 

part of the emergence chain for SARS-CoV-218,19. 790 

 791 
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Alongside these high-ranked species-level predictions, we visually examined how predictions 792 

varied across all mammal orders and families using the whole dataset (ED Figure 5). Pangolins 793 

(Pholidota), treeshrews (Scandentia), carnivores (Carnivora), hedgehogs (Erinaceomorpha), and 794 

even-toed ungulates (Artiodactyla) had high mean predicted probabilities. Investigating family-795 

level sharing probabilities revealed that civets (Viverridae) and mustelids (Mustelidae) were 796 

responsible for the high Carnivora probabilities, and mouse deer (Tragulidae) and bovids 797 

(Bovidae) were mainly responsible for high probabilities in the Artiodactyla (ED Figure 6). 798 

 799 

Consensus Methods and Recommendations 800 

 801 

Combining and ranking predictions 802 

 803 

For seven models predicting bat hosts of betacoronaviruses, and five models predicting mammal 804 

hosts of betacoronaviruses, we combined predictions—generated using the same standardized 805 

data—into one standardized dataset. All mammal models were trained on data including bats, but 806 

predictions were subset to exclude bats to focus on likely intermediate hosts.  807 

 808 

Each study’s unique output—a non-intercomparable mix of different definitions of suitability or 809 

probability of association—were transformed into proportional rank, where lower rank indicates 810 

higher evidence for association out of the total number of hosts examined. By rescaling all results 811 

to proportional ranks between zero and one, we also allowed comparison of in-sample and out-812 

of-sample predictions across all models. Proportional ranks were averaged across models to 813 

generate one standardized list of predictions. This absorbed much of the variation in model 814 

performance (ED Figure 1) and produced a set of rankings that performed well. 815 

 816 

We elected not to withhold any “test” data to measure model performance, given that each 817 

method deployed in the ensemble has been independently and rigorously tested and validated in 818 

previous publications. Instead, to maximize the amount of available training data for every model, 819 

we used full datasets in each model and measured performance on the full training data.  820 

 821 

For bats, the final ensemble of models spanned a large range of performance on the training data, 822 

measured by the area under the receiver operator curve (AUC; Network 1: 0.624; Network 2: 0.987; 823 

Network 3: 0.514; Network 4: 0.726; Trait 1: 0.850; Trait 2: 0.902; Trait 3: 0.762), indicating that it 824 

was possible to suitably detect differences in model performance on the full data. The total 825 

ensemble of proportional ranks performed medium well (AUC = 0.791). We used known 826 

betacoronavirus associations to threshold each model and the ensemble predictions based on a 827 

10% omission threshold (90% sensitivity), and we again found a wide range in the number of 828 

predicted undiscovered bat hosts of betacoronaviruses (Network 1: 162 species; Network 2: 1; 829 

Network 3: 111; Network 4: 44; Trait 1: 425; Trait 2: 384; Trait 3: 720; total ensemble: 291 species). 830 

Given concerns about mammal model performance and biological accuracy (see Main Text), we 831 

elected not to apply this exercise to mammal hosts at large. 832 

 833 
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To visualize the spatial distribution of predicted bat hosts, we used the IUCN Red List database 834 

of species geographic distributions. We took the top 50 ranked in-sample predictions and top 50 835 

ranked out-of-sample predictions and combined these range maps to visualize species richness 836 

of top predicted hosts (Figure 3). 837 

 838 

Phylogenetic factorization of ensemble models 839 

 840 

We used phylogenetic factorization to flexibly identify taxonomic patterns in the consensus 841 

proportional rankings of likely hosts of SARS-CoV-2. Phylogenetic factorization is a graph-842 

partitioning algorithm that iteratively partitions a phylogeny in a series of generalized linear 843 

models to identify clades at any taxonomic level (e.g., rather than a priori comparing strictly 844 

among genera or family) that differ in a trait of interest 45. Using the mammal supertree, we used 845 

the phylofactor package to partition proportional rank as a Gaussian-distributed variable. We 846 

determined the number of significant phylogenetic factors using a Holm's sequentially rejective 847 

5% cutoff for the family-wise error rate. We applied this algorithm across our four final ensemble 848 

prediction datasets: in-sample bat ranks, out-of-sample bat ranks, in-sample mammal ranks, and 849 

out-of-sample mammal ranks.  850 

 851 

Using network and trait-based models within-sample, we identified only one bat clade with 852 

substantially different consensus proportional rankings, the Yangochiroptera (x̅=0.55 compared 853 

to 0.42 for the remaining bat phylogeny, the Yinpterochiroptera). Out of sample, using only trait-854 

based models, we instead identified seven bat clades with different propensities to include unlikely 855 

or likely bat hosts of betacoronaviruses. Subclades of the New World superfamily Noctilionoidea 856 

broadly had higher proportional ranks (x̅=0.72), indicating lower predicted probability of being 857 

hosts, as did the Emballanuridae (x̅=0.77). In contrast, several subfamilies of the Old World fruit 858 

bats (Pteropodidae), including the Rousettinae, Cynopterinae, and Eidolinaei, all had lower mean 859 

ranks (x̅=0.27). Our models also collectively identified the Rhinolophidae as having lower ranks 860 

(x̅=0.36). 861 

 862 

Using network models within-sample across non-volant mammals, we identified four clades with 863 

different proportional ranks. The largest clade was the Laurasiatheria (Artiodactyla, 864 

Perissodactyla, Carnivora, Pholidota, Soricomorpha, and Erinaceomorpha), which had lower 865 

proportional ranks (higher risk; x̄=0.55). Nested within this clade, the Cetacea had greater 866 

proportional ranks (x̄=0.89), indicating lower risk. A large subclade of the Murinae (Old World rats 867 

and mice) also had lower ranks (x̄=0.52). Out of sample, using only the biogeographic viral sharing 868 

model, we instead identified 15 clades with different proportional ranks. The first clade identified 869 

large swaths of the Muridae as having higher risk (x̄=0.38) as well as the Laurasiatheria (x̄=0.50). 870 

Old World primates had weakly lower risk (x̄=0.65), as did the Scuridae (x̄=0.67). The Cetacea and 871 

Pinnipedia both had greater proportional ranks (x̄=0.89 and x̄=0.71). Old World porcupines 872 

(Hystricidae) and the Erinaceidae (Paraechinus, Hemiechinus, Mesechinus, Erinaceus, Atelerix) 873 

both had greater risk (x̄=0.48 and x̄=0.39), while the Afrosoricida had higher ranks (x̄=0.97).  874 

 875 
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To assess potential discrepancy between taxonomic patterns in model ensemble predictions and 876 

those of simply host betacoronavirus status itself, we ran a secondary phylogenetic factorization 877 

treating host status as a Bernoilli-distributed variable, with the same procedure applied to 878 

determine the number of significant phylogenetic factors. To assess sensitivity of taxonomic 879 

patterns to sampling effort, we ran phylogenetic factorization with and without square-root 880 

transformed PubMed citations per species as a weighting variable (ED Figure 9). 881 

 882 

Without accounting for study effort, phylogenetic factorization of betacoronavirus host status 883 

identified one significant clade across the bat phylogeny, the Yangochiroptera, as having fewer 884 

positive species (4.71%) than the paraphyletic remainder (12.12%). When accounting for study 885 

effort, however, the single clade identified by phylogenetic factorization changed, with a subclade 886 

of the family Pteropodidae (the Rousettinae) having a greater proportion of positive species 887 

(28.6%). For non-volant mammals, phylogenetic factorization identified only one clade, the family 888 

Camelidae, as having more positive species (75%) than the tree remainder (0.68%).  889 

 890 

Phylogenetic factorization of Rhinolophidae virus sharing 891 

 892 

Because phylogenetic patterns in predictions from our viral sharing model could vary across other 893 

taxonomic scales beyond order and family, we also used phylogenetic factorization to more 894 

flexibly identify host clades with different propensities to share viruses with R. affinis and R. 895 

malayanus. We partitioned rank as a Gaussian-distributed variable and again determined the 896 

number of significant phylogenetic factors using Holm's sequentially rejective 5% cutoff.  897 

 898 

Within the Chiroptera, we identified 10 clades with different propensities to share viruses with R. 899 

affinis and 5 clades with different propensities to share viruses with R. malayanus. For both bats, 900 

the top clade was the family Rhinolophidae, reinforcing phylogenetic components of the 901 

biogeographic model and highlighting the greater likelihood of viral sharing (mean rank x̄=40 for 902 

R. affinis, x̄=42 for R. malayanus). For R. affinis, several individual bat species had lower risks of 903 

viral sharing (e.g., Myotis leibii, x̄=4100; Pteropus insularis, x̄=3157; Nyctimene aello, x̄=2497; 904 

Chaerephon chapini, x̄=2497). The Megadermatidae, Nycteridae, and Hipposideridae (under which 905 

the PanTHERIA dataset includes the genus Rhinonicteris, although this is now considered a 906 

separate family, the Rhinonycteridae104) collectively had greater likelihood of viral sharing 907 

(x̄=557), as did the Vespertillionidae (x̄=704).  908 

 909 

Across the non-volant mammals, we identified 7 clades with different propensities to share 910 

viruses with R. affinis and only 1 clade with different propensities to share viruses with R. 911 

malayanus. For both bat species, the first and primary clade was the Ferungulata (Artiodactyla, 912 

Perissodactyla, Carnivora, Pholidota, Soricomorpha, and Erinaceomorpha), which had lower ranks 913 

(higher viral sharing; x̄=2084). For viral sharing with R. affinis, the Sciuridae was more likely to 914 

share viruses (x̄=1948), as was the Scandentia (x̄=1416) and many members of the Colobinae 915 

(x̄=1958). However, members of the tribe Muntiacini (genera Elaphodus and Muntiacus) had 916 

especially high likelihoods of viral sharing and low rank (x̄=361). 917 
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 918 

Data and Code Availability 919 

 920 

The standardized data on betacoronavirus associations, and all associated predictor data, is 921 

available from the VERENA consortium’s Github (github.com/viralemergence/virionette). All 922 

modeling teams contributed an individual repository with their methods, which are available in 923 

the organizational directory (github.com/viralemergence). All code for analysis, and a working 924 

reproduction of each authors’ contributions, is available from the study repository 925 

(github.com/viralemergence/Fresnel). 926 

  927 
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Extended Data  928 

 929 

 930 

 931 

Extended Data Table 1. Results of phylogenetic factorization applied to predicted rank 932 

probabilities for bats. The number of retained phylogenetic factors (following a 5% family-wise 933 

error rate applied to GLMs), taxa corresponding to those clades, number of species per clade, and 934 

mean predicted rank probabilities for the clade compared to the paraphyletic remainder are 935 

shown stratified by models applied in- and out-of-sample.  936 

 937 

 938 

Sample Factor Taxa Tips Clade Other 

in 1 Yangochiroptera 160 0.549 0.422 

out 1 Mystacinidae, Noctilionidae, Mormoopidae, Phyllostomidae 161 0.724 0.488 

out 2 

Mosia, Emballonura, Coleura, Rhynchonycteris, Cyttarops, 

Diclidurus, Centronycteris, Cormura, Saccopteryx, Balantiopteryx, 

Peropteryx 

31 0.774 0.516 

out 3 Thyropteridae, Furipteridae, Natalidae 12 0.853 0.520 

out 4 Molossidae 98 0.595 0.517 

out 5 

Rousettus, Megaloglossus, Eidolon, Myonycteris, Plerotes, 

Casinycteris, Scotonycteris, Nanonycteris, Hypsignathus, Epomops, 

Micropteropus, Epomophorus 

35 0.267 0.533 

out 6 

Sphaerias, Alionycteris, Otopteropus, Haplonycteris, Latidens, 

Penthetor, Thoopterus, Aethalops, Balionycteris, Chironax, 

Dyacopterus, Ptenochirus, Megaerops, Cynopterus 

26 0.263 0.531 

out 7 Rhinolophidae 73 0.360 0.536 

 939 
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Extended Data Table 2. Results of phylogenetic factorization applied to predicted rank 941 

probabilities for all mammals. The number of retained phylogenetic factors (following a 5% 942 

family-wise error rate applied to GLMs), taxa corresponding to those clades, number of species 943 

per clade, and mean predicted rank probabilities for the clade compared to the paraphyletic 944 

remainder are shown stratified by models applied in- and out-of-sample.  945 

 946 

 947 

Sample Factor Taxa Tips Clade Other 

in 1 
Phocoenidae, Delphinidae, Tursiops, Monodontidae, Physeteridae, 

Balaenopteridae, Eschrichtiidae 
12 0.889 0.611 

in 2 
Artiodactyla, Perissodactyla, Carnivora, Pholidota, Erinaceomorpha, 

Soricomorpha 
173 0.549 0.661 

in 3 

Lophuromys, Micaelamys, Apodemus, Arvicanthis, Bandicota, 

Madromys, Dasymys, Hydromys, Lemniscomys, Mastomys, Mus, 

Pelomys, Niviventer, Otomys, Praomys, Rattus, Vandeleuria 

38 0.520 0.627 

out 1 

Abditomys, Bullimus, Limnomys, Tarsomys, Tryphomys, Acomys, 

Lophuromys, Uranomys, Aethomys, Micaelamys, Anisomys, Chiruromys, 

Coccymys, Crossomys, Hyomys, Leptomys, Lorentzimys, 

Pseudohydromys, Paraleptomys, Macruromys, Mallomys, 

Microhydromys, Parahydromys, Pogonomelomys, Abeomelomys, 

Solomys, Xenuromys, Apodemus, Tokudaia, Apomys, Crunomys, 

Chrotomys, Rhynchomys, Arvicanthis, Bandicota, Batomys, Carpomys, 

Crateromys, Berylmys, Bunomys, Chiromyscus, Chiropodomys, 

Hapalomys, Haeromys, Colomys, Nilopegamys, Conilurus, Leporillus, 

Mesembriomys, Melomys, Protochromys, Mammelomys, Paramelomys, 

Uromys, Zyzomys, Leggadina, Notomys, Pseudomys, Mastacomys, 

Madromys, Cremnomys, Millardia, Dacnomys, Dasymys, Dephomys, 

Hybomys, Hydromys, Xeromys, Desmomys, Diomys, Diplothrix, 

Echiothrix, Margaretamys, Melasmothrix, Tateomys, Eropeplus, Lenomys, 

Golunda, Grammomys, Thallomys, Hadromys, Heimyscus, Hylomyscus, 

Komodomys, Papagomys, Oenomys, Thamnomys, Lemniscomys, 

Lenothrix, Leopoldamys, Malacomys, Praomys, Myomyscus, Mastomys, 

Maxomys, Micromys, Muriculus, Mus, Mylomys, Pelomys, 

Stenocephalemys, Nesokia, Niviventer, Otomys, Parotomys, 

Palawanomys, Paruromys, Phloeomys, Pithecheir, Pogonomys, Rattus, 

Rhabdomys, Srilankamys, Nesoromys, Stochomys, Sundamys, Taeromys, 

Vandeleuria, Vernaya, Zelotomys 

510 0.382 0.672 

out 2 Artiodactyla, Perissodactyla, Carnivora, Pholidota 505 0.495 0.651 

out 3 
Anomaluridae, Pedetidae, Dipodidae, Cricetidae, Muridae, Nesomyidae, 

Calomyscidae, Spalacidae, Platacanthomyidae 
779 0.643 0.622 

out 4 Talpidae, Erinaceomorpha, Soricidae 357 0.630 0.627 

out 5 Cercopithecidae, Hominidae, Hylobatidae 139 0.649 0.626 
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Extended Data Table 2, continued. (Page 2 of 2) 949 

 950 

Sample Factor Taxa Tips Clade Other 

out 6 

Abrawayaomys, Handleyomys, Aepeomys, Thomasomys, Abrothrix, 

Akodon, Necromys, Deltamys, Thaptomys, Andalgalomys, Auliscomys, 

Loxodontomys, Phyllotis, Paralomys, Graomys, Andinomys, Bibimys, 

Kunsia, Scapteromys, Blarinomys, Calomys, Chelemys, Chilomys, 

Chinchillula, Delomys, Eligmodontia, Euneomys, Galenomys, Geoxus, 

Holochilus, Lundomys, Pseudoryzomys, Irenomys, Lenoxus, Melanomys, 

Microryzomys, Neacomys, Nectomys, Neotomys, Nesoryzomys, 

Notiomys, Oecomys, Oligoryzomys, Oryzomys, Oxymycterus, 

Brucepattersonius, Phaenomys, Podoxymys, Punomys, Reithrodon, 

Rhagomys, Rhipidomys, Scolomys, Sigmodontomys, Thalpomys, 

Wiedomys, Wilfredomys, Juliomys, Zygodontomys, Anotomys, 

Chibchanomys, Ichthyomys, Neusticomys, Rheomys, Sigmodon, 

Nyctomys, Otonyctomys, Ototylomys, Tylomys, Baiomys, Scotinomys, 

Ochrotomys, Habromys, Neotomodon, Podomys, Osgoodomys, 

Megadontomys, Peromyscus, Onychomys, Isthmomys, Reithrodontomys, 

Hodomys, Xenomys, Neotoma, Nelsonia 

397 0.703 0.616 

out 7 

Tamiasciurus, Sciurus, Rheithrosciurus, Microsciurus, Syntheosciurus, 

Pteromys, Petaurista, Belomys, Biswamoyopterus, Trogopterus, 

Pteromyscus, Aeromys, Eupetaurus, Aeretes, Glaucomys, Eoglaucomys, 

Hylopetes, Petinomys, Petaurillus, Iomys, Ratufa, Callosciurus, Glyphotes, 

Lariscus, Menetes, Rhinosciurus, Funambulus, Tamiops, Dremomys, 

Exilisciurus, Hyosciurus, Prosciurillus, Rubrisciurus, Nannosciurus, 

Sundasciurus 

139 0.672 0.625 

out 8 
Phocoenidae, Delphinidae, Tursiops, Monodontidae, Physeteridae, 

Balaenopteridae, Eschrichtiidae 
12 0.889 0.626 

out 9 Odobenidae, Otariidae, Phocidae 33 0.714 0.626 

out 10 Hystricidae 11 0.482 0.627 

out 11 Caprolagus, Poelagus, Lepus, Oryctolagus 33 0.642 0.627 

out 12 Paraechinus, Hemiechinus, Mesechinus, Erinaceus, Atelerix 15 0.388 0.628 

out 13 Afrosoricida 41 0.970 0.623 

out 14 

Castoridae, Heteromyidae, Geomyidae, Octodontidae, Ctenodactylidae, 

Ctenomyidae, Abrocomidae, Caviidae, Dinomyidae, Petromuridae, 

Dasyproctidae, Myocastoridae, Echimyidae, Erethizontidae, 

Capromyidae, Cuniculidae, Thryonomyidae, Bathyergidae, Chinchillidae 

295 0.872 0.603 

out 15 Cheirogaleidae, Indriidae, Daubentoniidae, Lemuridae, Lepilemuridae 48 0.921 0.623 
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Extended Data Table 3. Predicted high-similarity bat hosts sharing with Rhinolophus affinis and 952 

R. malayanus. Species on these lists may be particularly likely to be the ultimate evolutionary 953 

origin of SARS-CoV-2, or a closely-related virus prior to recombination in an intermediate host. 954 

Predictions are made based just on the average viral sharing probability inferred for the two hosts 955 

from the phylogeography model (Trait-based 3). (* Note that the two species have high sharing 956 

probabilities with each other, potentially indicating that efforts to trace the origins of SARS-CoV-957 

2 are already very close to their target.) 958 

 959 

 960 

Rhinolophus affinis Rhinolophus malayanus 

1. Rhinolophus macrotis (P=0.84) 1. Rhinolophus shameli (P=0.87) 

2. Rhinolophus stheno (P=0.83) 2. Rhinolophus coelophyllus (P=0.84) 

3. Rhinolophus malayanus (P=0.82) 3. Rhinolophus thomasi (P=0.84) 

4. Rhinolophus acuminatus (P=0.81) 4. Rhinolophus affinis (P=0.82) 

5. Rhinolophus pearsonii (P=0.78) 5. Rhinolophus marshalli (P=0.82) 

6. Rhinolophus shameli (P=0.78) 6. Rhinolophus pearsonii (P=0.82) 

7. Rhinolophus thomasi (P=0.78) 7. Rhinolophus yunanensis (P=0.79) 

8. Rhinolophus sinicus (P=0.77) 8. Rhinolophus paradoxolophus (P=0.78) 

9. Rhinolophus trifoliatus (P=0.76) 9. Rhinolophus macrotis (P=0.76) 

10. Rhinolophus marshalli (P=0.72) 10. Rhinolophus acuminatus (P=0.75) 

11. Rhinolophus shortridgei (P=0.71) 11. Rhinolophus siamensis (P=0.75) 

12. Rhinolophus luctus (P=0.7) 12. Rhinolophus rouxii (P=0.72) 

13. Rhinolophus sedulus (P=0.7) 13. Rhinolophus stheno (P=0.71) 

14. Rhinolophus rouxii (P=0.69) 14. Rhinolophus luctus (P=0.69) 

15. Rhinolophus pusillus (P=0.68) 15. Rhinolophus trifoliatus (P=0.65) 

16. Rhinolophus ferrumequinum (P=0.67) 16. Rhinolophus pusillus (P=0.62) 

17. Rhinolophus lepidus (P=0.67) 17. Rhinolophus borneensis (P=0.6) 

18. Hipposideros pomona (P=0.66) 18. Hipposideros lylei (P=0.59) 

19. Rhinolophus celebensis (P=0.66) 19. Rhinolophus shortridgei (P=0.59) 

20. Rhinolophus paradoxolophus (P=0.66) 20. Rhinolophus sinicus (P=0.59) 
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Extended Data Table 4. Predicted high-similarity non-bat hosts sharing with Rhinolophus affinis 962 

and R. malayanus. Species on these lists may be particularly suitable as stepping stones for 963 

betacoronavirus transmission from bats into humans, including potentially for SARS-CoV-2 and 964 

other SARS-like viruses. Predictions are made based just on the average viral sharing probability 965 

inferred for the two hosts from the phylogeography model (Trait-based 3). Species’ binomial 966 

names are included alongside their families. 967 

 968 

Rhinolophus affinis Rhinolophus malayanus 

1. Arctonyx collaris (P=0.33) Mustelidae 1. Arctonyx collaris (P=0.29) Mustelidae 

2. Budorcas taxicolor (P=0.33) Bovidae 2. Herpestes urva (P=0.28) Herpestidae 

3. Viverra tangalunga (P=0.32) Viverridae 3. Lutrogale perspicillata (P=0.28) Mustelidae 

4. Manis javanica (P=0.3) Manidae 4. Melogale personata (P=0.27) Mustelidae 

5. Mustela altaica (P=0.3) Mustelidae 5. Viverra megaspila (P=0.26) Viverridae 

6. Ursus thibetanus (P=0.3) Ursidae 6. Arctictis binturong (P=0.25) Viverridae 

7. Cynogale bennettii (P=0.29) Viverridae 7. Euroscaptor klossi (P=0.25) Talpidae 

8. Elaphodus cephalophus (P=0.29) Cervidae 8. Lutra sumatrana (P=0.25) Mustelidae 

9. Lutrogale perspicillata (P=0.29) Mustelidae 9. Sus scrofa (P=0.25) Suidae 

10. Viverricula indica (P=0.29) Viverridae 10. Capricornis milneedwardsii (P=0.23) Bovidae 

11. Capricornis sumatraensis (P=0.28) Bovidae 11. Manis javanica (P=0.23) Manidae 

12. Chimarrogale himalayica (P=0.28) Soricidae 12. Manis pentadactyla (P=0.23) Manidae 

13. Helarctos malayanus (P=0.28) Ursidae 13. Mustela nudipes (P=0.23) Mustelidae 

14. Herpestes javanicus (P=0.27) Herpestidae 14. Paguma larvata (P=0.23) Viverridae 

15. Hylomys suillus (P=0.27) Erinaceidae 15. Panthera pardus (P=0.23) Felidae 

16. Mustela kathiah (P=0.27) Mustelidae 16. Viverra zibetha (P=0.23) Viverridae 

17. Capricornis milneedwardsii (P=0.26) Bovidae 17. Bandicota savilei (P=0.22) Muridae 

18. Catopuma temminckii (P=0.26) Felidae 18. Chrotogale owstoni (P=0.22) Viverridae 

19. Crocidura negligens (P=0.26) Soricidae 19. Crocidura fuliginosa (P=0.22) Soricidae 

20. Capricornis thar (P=0.25) Bovidae 20. Crocidura vorax (P=0.22) Soricidae 
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Extended Data Table 5. Taxonomic scale of model training data and predictive 970 

implementation. Notes: (1) These models generated predictions of sharing with Rhinolophus 971 

affinis over all non-human mammals in the HP3 dataset, then subsetted to bats. (2) In these 972 

models, bat-betacoronavirus predictions are based on a subset of binary outcomes for known 973 

association with betacoronaviruses, without any other viruses included. 974 

 975 

Model approach Training data scale 
Bat 

Betacoronavirus 
predictions 

Mammal-wide 
Betacoronavirus  

predictions 

Network-based 1  
k-Nearest neighbors 

Bat-virus 🗸  

Network-based 1  
k-Nearest neighbors 

Mammal-virus  🗸 

Network-based 2  
Linear filter  

Bat-virus 🗸  

Network-based 2  
Linear filter  

Mammal-virus  🗸 

Network-based 3  
Plug-and-play  

Mammal-virus1 🗸 🗸 

Network-based 4  
Scaled-phylogeny 

Bat-virus 🗸  

Network-based 4 
Scaled-phylogeny 

Mammal-virus  🗸 

Trait-based 1 
Boosted regression trees  

Bat-betacoronavirus2 🗸  

Trait-based 2  
Bayesian additive 
regression trees 

Bat-betacoronavirus2 🗸  

Trait-based 3 
Neutral phylogeographic 

Mammal-virus1 🗸 🗸 
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Extended Data Table 6. Data scale of prediction, by method. Some methods use 978 

pseudoabsences to expand the scale of prediction but still only analyze existing data, with no out-979 

of-sample inference, while others can predict freshly onto new data. (* Training data from the HP3 980 

database uses pseudoabsences, but no new ones are generated in this study that modify the 981 

model or the bat-virus association dataset) 982 

 983 

Model approach 

Prediction on hosts 
without known 

associations (out-of-
sample) 

Predictive extent and use of pseudoabsences 

Network-based 1  
k-Nearest neighbors 

No 
Only predicts link probabilities among species in the 

association data 

Network-based 2  
Linear filter  

No 
Only predicts link probabilities among species in the 

association data 

Network-based 3  
Plug-and-play  

No 
Uses pseudoabsences to predict over all mammals in 

association data, using latent approach 

Network-based 4 
Scaled-phylogeny 

No 
Only predicts link probabilities among species in the 

association data 

Trait-based 1 
Boosted regression trees  

Yes 
Uses pseudoabsences for all bats in trait data to predict 

over all species, including those without known 
associations 

Trait-based 2  
Bayesian additive 
regression trees 

Yes 
Uses pseudoabsences for all bats in trait data to predict 

over all species, including those without known 
associations 

Trait-based 3 
Neutral phylogeographic 

Yes 
Trains on a broader network, and predicts sharing 

probabilities among any mammals in phylogeny and 
IUCN range map data 

 984 

  985 

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 23, 2020. . https://doi.org/10.1101/2020.05.22.111344doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.111344
http://creativecommons.org/licenses/by-nd/4.0/


Extended Data Figure 1. Bat models perform more strongly together than in isolation. Curves 986 

show observed betacoronavirus hosts against predicted proportional ranks from seven individual 987 

models, and incorporated into one multi-model ensemble. Black lines show a binomial GLM fit to 988 

the predicted ranks against the recorded presence or absence of known betacoronavirus 989 

associations. Points are jittered to reduce overlap. 990 
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Extended Data Figure 2. Poor concordance among predictive models for mammal hosts of 993 

betacoronaviruses. The pairwise Spearman’s rank correlations between models’ ranked species-994 

level predictions were generally low (A). In-sample predictions varied significantly and heavily 995 

prioritized domestic animals and well-studied hosts (B). The ten species with the highest mean 996 

proportional ranks across all models are highlighted in shades of purple. Only in-sample 997 

predictions are displayed because only one model (Trait-based 3) was able to predict out of 998 

sample for all mammals. 999 
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Extended Data Figure 3. Results of phylogenetic factorization applied to predicted ranks of virus 1001 

sharing with Rhinolophus affinis and Rhinolophus malayanus. Colored regions indicate clades 1002 

identified as significantly different in their predicted rank compared to the paraphyletic remainder; 1003 

those more likely to share a virus with the Rhinolophus are shown in red, whereas those less likely 1004 

to share a virus are shown in blue. Bar height indicates predicted rank (higher values = lower rank 1005 

score, more likely share virus). Results are displayed for bats and remaining mammals separately. 1006 

Mammal-wide clades with high propensities to share viruses with R. affinis based solely on their 1007 

phylogeography included the treeshrews (Scandentia), Old World monkeys (Colobinae), and both 1008 

tufted and barking deer (Muntiacini). 1009 

 1010 
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Extended Data Figure 4. Predicted species-level sharing probabilities of A) Rhinolophus affinis 1013 

and B) Rhinolophus malayanus, calculated according to the phylogeographic viral sharing 1014 

model48. Each coloured point is a mammal species. Black points and error bars denote means 1015 

and standard errors for each order. Mammal orders are arranged according to their mean sharing 1016 

probability. 1017 
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Extended Data Figure 5. Predicted species-level sharing probabilities of A) Rhinolophus affinis 1020 

and B) Rhinolophus malayanus, calculated according to the phylogeographic viral sharing model^. 1021 

Each coloured point is a mammal species. Black points and error bars denote means and 1022 

standard errors for each order. Mammal orders are arranged according to their mean sharing 1023 

probability. 1024 

 1025 

 1026 
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Extended Data Figure 6. To account for uncertainty in the phylogenetic distances among hosts, 1030 

the scaled-phylogeny model estimates a tree scaling parameter (eta) based on an early-burst 1031 

model of evolution. On the left is the unscaled bat phylogeny for the hosts in the bat-virus genera 1032 

network, and on the right is the same tree rescaled according to mean estimated scaling 1033 

parameter (eta = 7.92). Eta values above 1 indicate accelerating evolution, suggesting less 1034 

phylogenetic conservatism in host-virus associations among closely related taxa than would be 1035 

predicted by a Brownian-motion model on the unscaled tree. 1036 

 1037 
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Extended Data Figure 7. Four formulations of Bayesian additive regression tree (BART) models 1040 

produce slightly different results, but largely agree. Two models use baseline BART, while two 1041 

models use a Dirichlet prior on variable importance (DART). Two are uncorrected for sampling 1042 

bias (u) while two are corrected using citation counts (c). In the final main-text model ensemble, 1043 

we present a DART model including correction for citation bias, which penalizes overfitting and 1044 

spurious patterns two ways and leads to predictions with a lower total correlation with the data, 1045 

but a still-high performance (AUC = 0.90). 1046 
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Extended Data Figure 8. Partial dependence for the Bayesian additive regression tree models with 1049 

uniform variable importance prior (top) versus Dirichlet prior (bottom), without (left) and with 1050 

(right) correction for citations. 1051 
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Extended Data Figure 9. Results of phylogenetic factorization applied to binomial 1055 

betacoronavirus data across bats (top) and other mammals (bottom), using raw data (left) and 1056 

after weighting by citation counts (right). Any significant clades (5% family-wise error rate) are 1057 

displayed in colored sharing on the phylogeny. Bars indicate betacoronavirus detection, and 1058 

clades are colored by having more (red) or fewer (blue) positive species. 1059 
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