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Most emerging human infectious diseases originate in 
wild animals1. Of these zoonoses, viruses account for the 
majority of severe epidemics and pose the greatest pan-

demic threat due to their transmissibility, evolvability and lack of 
therapeutic options. Every year, a growing number of viruses are 
detected in human hosts for the first time2, both because of better 
surveillance and because the rate of viral emergence is increasing3. 
Factors that contribute to emergence risk include weak health sys-
tems, globalization, inequality, conflict, increasing human–wild-
life contact, agricultural intensification, deforestation and climate 
change4–6. Given the urgency of understanding and containing these 
threats, substantial research effort has been directed towards mod-
elling and predicting host–virus interactions in recent decades.

With the advent of the COVID-19 (coronavirus disease 2019) 
pandemic, the global scientific community may finally have a broad 
public and policy audience willing to tackle emerging zoonotic 
diseases, with the aim of ‘predicting and preventing the next pan-
demic’7. ‘Prevention’ ultimately falls on healthcare systems and pol-
icy interventions, but ‘prediction’—knowing which possible threats 
should be countered most urgently—is a task that draws on various 
fields, including microbiology, virology, ecology, evolutionary biol-
ogy and statistics. Experts in these fields face a massive problem of 
triage: today’s public health emergencies are caused by only a small 
subset of the thousands of animal viruses that have zoonotic poten-
tial—the ability to infect a human host8,9. Modelling can accelerate 

the identification of potential future threats if general rules deter-
mine which animals and which viruses will pose a future threat to 
humans with enough specificity to make these predictions action-
able. Statistical models have helped to identify reservoir species of 
novel human pathogens10, map the geographic distribution of risk11, 
identify seasonal trends in spillover12, estimate transmissibility and 
virulence post-emergence in humans13, quantify outbreak detect-
ability and under-detection14, and project onward spread15. All of 
these objectives are part of a prediction pipeline intended to make 
basic science actionable in public health, but currently these funda-
mental endeavours rarely reach their full applied potential.

Here we review the subset of modelling studies that predict 
the potential for specific viruses to infect host species (hereafter 
host–virus associations). We aim to highlight the main approaches, 
hypotheses and innovations in this area. These studies have helped 
to synthesize the basic biological mechanisms that structure the 
global virome and have shown increasing potential to identify the 
highest-risk hosts and viruses. However, risk assessment for known 
viruses is still carried out using a mix of expert opinion and labora-
tory work16,17, largely in the absence of predictive methods. As such, 
most modelling work has translated into limited veterinary or pub-
lic health benefits, leading to concern that predictive approaches 
may have limited utility for outbreak prevention, especially when 
compared with direct investments in aid programmes, capac-
ity building, syndromic surveillance or vaccine development18,19.  
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We assess how models may better deliver on their promise and  
contribute meaningfully to the prediction of future viral threats.

using patterns for prediction
When the public or policymakers talk about ‘prediction’ in a One 
Health or pandemic preparedness setting, this idea often refers to 
anticipating future events. In this view, knowing an outbreak is 
coming may conceivably allow it to be circumvented or, at least, 
substantially lessened in scope and duration. However, in com-
putational biology, ‘prediction’ more often refers to the ability of 
quantitative tools to recapitulate and explain the world as it exists 
today and has done through history and, by extension, anticipate 
both unknown contemporary patterns and potential future ones. 
Conventionally, these approaches fall on a continuum between 
mechanistic, hypothesis-driven statistics (often associated with the 
idea of explanatory prediction, based on iterative confirmation of 
theory) and mechanism-agnostic, exploratory machine learning 
(used to make predictions over new data, also called anticipatory 
prediction)20,21. However, the two approaches are synergistic, and 
the boundary between the approaches is increasingly blurred owing 
to both an expanding set of tools for interpretable (non-‘black box’) 
machine learning and a growing set of opportunities (and expecta-
tions) to use model–lab–field feedbacks to challenge and improve 
predictive models.

Predictive tools can be used to explain and anticipate many 
aspects of pathogen transmission. Here we review a subset of those 
tools, which aim to identify and predict why some host species can 
be infected with some viruses and others cannot. Models can, with 
increasing accuracy, predict the zoonotic potential, reservoir hosts 
or host range of a virus species; the viral diversity of a given host 
species; and viral sharing among host species. These basic model 
formulations can all be viewed as subsets of one overarching sta-
tistical approach: using statistical models trained on host–virus 
association data to explain, reproduce and infer the structure of the 
host–virus network (Fig. 1).

These approaches can be identified by the shared data struc-
ture they use, which always consists of an edgelist—a set of known 
host–virus associations, in which most missing or negative records 
of association represent untested potential interactions—and linked 
metadata that may include data collection methods, host and virus 
traits (microbiological, ecological or phylogenetic), and infection 
characteristics22–26. The quality of these datasets varies in terms of 
scope, completeness, accuracy and documentation, reflecting the 
challenges of both wildlife virology and data synthesis. For example, 
matrix sparsity is a major limitation for computational power: most 
datasets only record known interactions, with few ‘true negatives’, 
and many presumed negatives are actually unrecorded associa-
tions. Even in long-term ecosystem studies, a third of ‘cryptic’ host–
pathogen interactions may go unrecorded27, while at the planetary 
scale, over 90% of possible mammal–virus associations may never 
have been observed28. At the same time, reported interactions may 
also include a mix of data quality (that is, a mix of true and false 
positives). For example, serological evidence can be confounded by 
cross-reactivity among closely related viruses, and the process of 
digitization can also introduce new errors and inconsistencies, par-
ticularly in host and virus taxonomy. Every dataset contains unique 
iterations of these challenges, and discrepancies among them can 
create significant problems for reproducible hypothesis testing26. 
Researchers may therefore aim to work from standardized datas-
ets such as The Global Virome in One Network (VIRION)29, which 
aims to compile every available source of information on vertebrate 
viruses into one dynamic, open dataset with a reconciled taxonomic 
backbone and rich metadata on host and virus taxonomy, data prov-
enance and evidence of interactions.

Owing to a common data structure, most studies explore the 
same basic biological patterns, leading to a broad set of similar  

findings. For example, exposure and susceptibility within host  
populations have analogues at eco-evolutionary scales in ‘opportu-
nity’ and ‘compatibility’, captured by geographic and phylogenetic 
data, respectively4. Host species with broader geographic ranges 
develop more population genetic structure, encounter more habi-
tats and contact more species—facilitating pathogen exchange at an 
ecological scale, and viral diversification at an evolutionary scale30,31. 
Consequently, host geographic range size is a common predictor 
of viral diversity22,32 and reservoir status11,22, and range overlap is a 
strong predictor of viral sharing between hosts30. Most studies find 
a similarly strong phylogenetic effect: some animal clades dispro-
portionately host particular viruses22,33, closely related host species 
share more viruses30, and zoonoses disproportionately originate in 
non-human primates13,22. In predictive models, host phylogenies 
can help to identify and recapitulate a combination of intrinsic 
autocorrelation (closely related hosts share coevolutionary histo-
ries with specific viruses) and latent biological mechanisms (closely 
related hosts share traits such as metabolic pathways, viral receptors 
or innate immune mechanisms through identity by descent34). The 
relative contribution of the two is rarely identifiable, particularly 
because large databases of within-host traits (for example, recep-
tor chemistry or innate immune responses) are mostly unavailable, 
thus most studies use host phylogeny as a broad, correlative proxy. 
Together, phylogeographic predictors are often the strongest across 
modelling approaches.

Broad similarities such as these point to a set of emerging ‘uni-
versal laws’—for example, ‘phylogeographic proximity increases 
the similarity of host viromes’—that have been repeatedly sup-
ported across modelling studies, were often suggested in advance 
by theory and experimental evidence34–36 and predict unknown 
host–virus associations with surprising accuracy30. However, dif-
ferent study designs can produce very different kinds of ‘predic-
tions’ (Fig. 2), and even though many studies use the same data and 
statistical methods, the lack of a shared modelling framework has 
made it difficult to synthesize these findings, for example varying 
and complex reporting formats prevent researchers from conduct-
ing formal meta-analyses. We outline such a framework (Table 1) 
and the broad patterns that each approach has so far uncovered. To 
help researchers build on those patterns, we have organized the last 
decade of this scientific work into our taxonomy in the Host–Virus 
Model Database (HVMD, available at viralemergence.org/hive-
mind), an evidence base of predictive studies and their data, meth-
odology and key findings (and one that we hope will, over time, 
become more comprehensive than the necessarily limited coverage 
of studies here).

Model design shapes insights and applications
Predicting species interactions is a fundamental task in ecology, 
especially with the emergence of ecological network science as a 
subfield. Here we discuss six approaches researchers can use to 
understand host–virus interactions as a network science problem. 
The most general approach, link prediction models, uses known 
associations in an ecological network to infer the probable asso-
ciation of any two species. For symbiotic interactions, the model 
is usually structured on the basis of a bipartite network of hosts 
and symbionts (for example hosts and viruses, or plants and pol-
linators), with species traits used to predict binary link values that 
denote the presence or absence of an interaction27,37. Link pre-
diction is a general case of other specialized models: for exam-
ple, zoonotic risk models calculate the link probability between 
all virus nodes and one host node (humans) (Fig. 1a), and link 
prediction models can similarly be used to identify potential 
zoonoses as a subset of their predictions37. However, different 
kinds of link prediction may have subtle conceptual differences. 
For example, a ‘link’ can be hard to define: is the aim to predict 
all existing hosts of a virus or all potentially compatible hosts? 
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Generic host–virus association data are often mismatched with 
the study aims; these sources primarily catalogue viruses in natu-
ral hosts, but they also contain a mix of experimental infections 
that may be unrepresentative of infection dynamics in the wild, 
and serological detections that indicate exposure but not neces-
sarily competence (and that are confounded by cross-reactivity38). 
Careful training data selection and analytical design can help to 
predict ‘links’ with more biological meaning39, and reporting the 
sensitivity of model results to different evidentiary standards can 
improve transparency22.

Host inference considers a one-sided subset of the link predic-
tion problem, focused on predicting the hosts, reservoirs or some-
times vectors of one specific virus. The approach is most valuable 
when the definitive reservoir is unknown40, additional reservoirs 
are suspected41 or intermediate hosts are of interest42. Models can 
be easily tailored to these circumstances by using training data 
that reflect host competence (for example viral isolation instead 
of PCR or serology, or testing tick larvae for pathogens as a proxy 
of a host’s ability to transmit39) or distinguish reservoirs from inci-
dental hosts43. These approaches have also been widely suggested 
as a way of triaging viral sampling in wildlife41, but model perfor-
mance is variable, and this approach has only been tested in limited 
settings. As genomic data become more integral to the field, these 
approaches also show tremendous promise to narrow the search for 

hosts of ‘orphan viruses’ with no known non-human hosts10. Finally, 
mapping the distribution of predicted hosts can help to reveal the 
spatial extent of spillover risk and can inform possible futures after 
climate and land use change4.

Conversely, zoonotic risk models aim to identify which viruses 
can infect one specific host (humans), a task that is often framed 
as the most important for public health applications. Most sta-
tistical analyses have focused on the factors that predict innate 
cross-species transmission potential, with the assumption that 
humans are ‘just another host’ and that high host plasticity predicts 
zoonotic potential44,45. More often, the risk factors used in zoonotic 
risk models are quite coarse and describe thousands of candidate 
viruses, such as RNA viruses46,47 with broad host range44,45, larger 
genomes48, vector-borne transmission22, replication in the cyto-
plasm22,33,49 or lipid envelopes22,33. Interestingly, many of these traits 
also have contradictory impacts on transmissibility or severity, 
adding a layer of complexity; some approaches extend this model-
ling framework to explicitly predict these downstream properties 
of zoonotic viruses13,50. Some cutting-edge approaches focus more 
on the specific underpinnings of human–virus compatibility, antici-
pating structural and biochemical interactions between viruses and 
cell receptors51 and using genomic features and machine learning to 
identify human viruses from metagenomic samples52 or to predict 
zoonotic potential across different influenza or bacterial strains53,54.
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Fig. 1 | Designing predictive models. Studies can use data describing known host–virus interactions to predict potential cross-species transmission. 
Several approaches involve predicting the structure of host–virus association networks (depicted here using real associations known from large datasets 
in disease ecology), including zoonotic risk prediction (A: can a virus infect humans?) and reservoir identification (B: where does a zoonotic virus come 
from?); work trying to predict viral host range (C: how many hosts?) and viral diversity (E: how many viruses?); and viral sharing analysis (D: which hosts 
share viruses?). All of these are subsets of a general problem (F): the prediction of bipartite network links, as a way of representing host–virus associations. 
Approaching these problems as general link prediction may lead to new insights, especially when considering a more complete network. For comparison, 
we show the full range of recorded interactions compiled across the HP3 database (G: black lines match the smaller examples, but additional known links 
are added in grey), for example a recent link prediction study found a high probability that two of these viruses (bovine viral diarrhoea disease virus 1 and 
bluetongue virus, red links) may have undiscovered zoonotic potential (red lines in ref. 37). Light and dark blue nodes on the right (G) represent the same 
viruses and hosts, respectively depicted on the left (A–F).
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Statistical analyses of viral sharing reframe bipartite host–virus 
networks as unipartite host–host networks and predict whether 
two hosts share any viruses on the basis of host traits alone. These 
approaches are limited by viewing viral ecology as an emergent 
property of hosts, but this reframing reduces network sparsity and 
opens up an underexplored computational toolkit for unipartite 
network models55. These models readily identify neutral processes 
in the ecology of pathogen transmission30, predict cross-species 
transmission with surprising accuracy56 and can be easily inter-
faced with models of macroecological change4. However, because 
they treat viruses as interchangeable, these approaches lose poten-
tially important signals in the data. A handful of studies also model 
one specific aspect of viral sharing: the probability that an animal 
host shares any viruses at all with humans (that is, whether the host 
is a zoonotic reservoir). As with viral sharing generally, sympatry 
and synanthropy determine opportunities for human–animal con-
tact and predict sharing, both through domestication and through 
geographic overlap between wildlife ranges and human popula-
tion centres22,57. Some traits may uniquely predict zoonotic reser-
voirs, such as a fast life history strategy, in which lifespan is traded 
off in favour of fertility58, and because they are smaller and more 
numerous, fast-lived species are more likely to thrive in disturbed 

ecosystems or alongside human settlements and thus may often be 
sources of zoonotic outbreaks59,60.

Finally, viral richness models and host range models investigate 
node degree in the bipartite network, that is, how many hosts a given 
virus can infect (host range) and how many viruses have infected a 
given host (viral richness). By collapsing the bipartite network into 
node-level traits, they provide coarse measures that can be used 
in species-level analyses (for example, see ref. 22). Identifying viral 
traits, such as vector transmission, that predict broad host range 
helps in exploring the evolutionary theory of cross-species transmis-
sion events and could inform zoonotic risk models22,45. Conversely, 
understanding ecological drivers of viral diversity can help to prior-
itize sampling for viral discovery22,61 and, potentially, to understand 
the distribution of zoonotic risk if some ‘hyper-reservoirs’ host dis-
proportionately many zoonotic viruses32,49. In this special case, some 
studies investigate zoonotic viral richness and test whether some 
animals host a greater number of viruses with observed zoonotic 
potential and whether this effect differs from overall viral richness62. 
Increasingly, careful analysis often rejects widely held assumptions 
(for example, bats or urban-adapted animals host most more zoo-
notic viruses) in favour of the null hypothesis that zoonotic viral 
richness is often simply a product of higher total viral diversity49,62.
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Fig. 2 | Four methods of interrogating host–virus networks. a, A link prediction model inferring the probability of host–parasite interactions using link 
prediction. Data are from ref. 27. b, A host inference model predicting the richness of probable Nipah virus reservoirs at specific locations. Data are from 
ref. 41. c, A zoonotic risk model, demonstrating that vector-borne viruses and those able to replicate in the cytoplasm are more likely to be able to infect 
humans. Individual data points indicate partial residuals, black lines are the mean partial effect and shaded areas indicate the 95% confidence interval. 
Data are from ref. 22. d, A viral sharing model showing that closely related sympatric mammals are more likely to share viruses. Black lines are the mean 
partial effects, and shaded areas indicate 95% confidence intervals. Data are from ref. 30.
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The limits of prediction
Each of these modelling approaches shows tremendous promise — 
but each is limited, first and foremost, by the availability of data on the 
global vertebrate virome. At most, 1% of mammal viruses have been 
described to date9 and even fewer are known from other vertebrates. 
At such an early stage in viral discovery, even the most basic statistics, 
such as host-level viral richness estimates, may say more about sam-
pling effort than the underlying biological reality63,64. When a new 
zoonotic virus emerges, researchers are disproportionately likely to 
sample related host species and viral taxa in the vicinity of the spill-
over event (bottom-up sampling bias). Surveillance also often targets 
well-studied cosmopolitan species due to availability, and is there-
fore more likely to discover more viruses, and more zoonotic viruses, 
in these species (top-down sampling bias49). Similarly, screening 
efforts have historically focused on hosts and viruses with known 
relevance to human or domestic animal health; this impact bias may 
be especially salient in regions with underfunded veterinary and 
public health surveillance infrastructure. Although high-throughput 
sequencing and broad-range serological approaches65 can counteract 
some of these biases, these approaches are not always cost-effective 
or practical to implement in resource-limited laboratory settings. As 
a result, targeted screening remains the primary source of host–virus 
association data, and biases remain pervasive.

Together, the limitations and priorities of these sampling pro-
cesses heavily shape the observed structure of the host–virus network 
and are difficult to correct for in modelling efforts30. At present, this 
is a notable barrier to the advancement of quantitative viral ecology. 
Most published disease modelling studies use one of only a few small 

datasets with substantial overlap and similar biases, test the same 
hypotheses and, unsurprisingly, have generated largely congruent 
findings (for example, ‘phylogenetic distance structures viral shar-
ing’), most of which are underinformed by microbiology and use 
phylogeographic or ecological proxies. While independent verifica-
tion of results is a critical part of the scientific method, especially if 
data easily facilitate re-analysis or meta-analysis, re-analysing these 
few datasets so intensely risks pseudo-replication and could entrench 
spurious findings that are readily explained by sampling bias. For 
example, a recent study showed that urban-adapted mammals have 
a higher recorded diversity of zoonotic viruses, but only because 
they also have a higher total diversity of recorded pathogens, which 
is probably a clear-cut example of top-down sampling bias62. Cases 
such as these have engendered scepticism of modelling approaches 
as a useful tool for applied risk assessment, particularly given the 
high diversity of wildlife viruses, significant gaps in both host and 
virus sampling, the spurious patterns generated by sampling bias and 
even the pace of viral diversification19,63,66. At present, scientists are 
unlikely to be able to ‘predict and prevent’ outbreaks using these tools. 
However, models will become more reliable if viral discovery contin-
ues at its current pace and, particularly, if data synthesis is a priority 
for quantitative research. As these datasets grow, they will open doors 
for more advanced methodologies that have greater impact.

Emerging directions for powerful inference
As this subfield advances, the microbiology underpinning models is 
becoming more detailed, leading to insights that better bridge virol-
ogy, ecology and computational biology. Across the global virome, 

Table 1 | Six approaches to predicting the host–virus network

Model design Model formulation Lessons learned and scientific impact

Link prediction Multiple hosts, multiple 
viruses

Host and viral traits interact to determine compatibility.
Many existing host–virus associations are unknown but can be inferred.
Many potential host–virus associations are unknown but predictable.

Host inference Multiple hosts, one virus Host evolutionary history and ecological traits determine (or correlate with) susceptibility or tolerance for 
viral infections.
Viral genomes carry identifiable signals of adaptation to host immune systems.
Predicted host lists for important viruses (for example betacoronaviruses or filoviruses) can be used to 
target viral discovery and surveillance.
Infection data are useful, but data on host competence makes it easier to predict candidate reservoirs.

Zoonotic risk One host (humans), 
multiple viruses

Zoonotic potential reflects a broader evolvability and propensity for cross-species transmission, driving 
the disproportionate number of zoonotic RNA viruses.
Traits such as lipid envelopes, cytoplasmic replication and genome size correlate not just with zoonotic 
potential but also with transmissibility.
With sufficient genomic data, determinants of zoonotic risk can be pinpointed down to the level of 
recombinant proteins or amino acid composition biases.
Scientists are increasingly able to triage newly discovered viruses on the basis of the predicted risk they 
pose to humans.

Viral sharing Multiple hosts, viruses 
implicit

Many properties of the host–virus network are agnostic to viral identity.
Phylogenetic similarity and geographic overlap structure viral sharing across scales.
Ecological similarity and interspecific contact patterns (for example, habitat use, cave roosting) permit 
viral sharing at fine scales.
Special case: contact with humans and agriculture in disturbed environments, and some evolutionary 
effects (for example, phylogenetic distance from humans, bat immune adaptations), explain which species 
are zoonotic reservoirs (share viruses with humans).

Viral diversity Multiple hosts and viruses, 
but summarized as node 
attributes of hosts

Species with broader geographic ranges have more viruses, as do some clades of mammals (bats, rodents 
and ungulates).
Special case: zoonotic viral diversity is higher in some clades (bats, rodents) and ecotypes (fast-lived, 
urban-adapted species), but this may be explained by the null hypothesis of higher total viral diversity.
The viral diversity of many hosts is largely unsampled and subject to change.

Host range Multiple hosts and viruses, 
but summarized to node 
attributes of viruses

Some viral clades (RNA viruses) and traits (genome size, vector-borne transmission) predict a capacity for 
broader host range.
The host range of many viruses is largely unsampled and subject to change.
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an intangible but finite set of host–virus associations are possible, 
while each impossible pair is prevented by at least one (identifiable 
and, ideally, predictable) incompatibility between viral and host 
microbiology. In this lock-and-key framework, a virus’s ability to 
infect a novel host species depends on the features that allow it to 
enter cells, hijack cellular machinery, replicate its genome, evade 
both the innate and adaptive immune response, produce infectious 
virions, optimize transmission and cause disease. While the ‘phy-
logenetic distance effect’ has been used as a broadly supported and 
convenient (but black box) proxy for these mechanisms, research-
ers are increasingly turning to data that explicitly characterize these 
processes instead. For example, host cell receptors and viral enve-
lope proteins act as one kind of lock-and-key, which determine a 
virus’s potential for cell entry36; data on the angiotensin convert-
ing enzyme 2 (ACE2) receptor of mammalian host cells have been 
used to predict the broad host range of SARS-CoV (severe acute 
respiratory syndrome coronavirus) and SARS-CoV-2 (refs. 67,68). 
Compatibility is further altered by biochemical modifications of 
host and viral proteins, such as glycans (the sugars on the outside of 
host and virus proteins)69; viral proteins inherit host glycosylation, 
and their cross-species transmission potential may be enhanced or 
hindered by glycosylation by the source host70. The fractal geome-
try of these molecules could be represented as quantitative features, 
and glycan similarity may be predictive of viral sharing. Eventually, 
it may also be possible to represent more complicated immunol-
ogy in this framework, for example broadly reactive innate antivi-
ral factors, such as TRIM5α, act as barriers to different groups of 
viruses to varying degrees71, and while few models currently cap-
ture these pathways, this may be an important research horizon in 
the coming decade.

Increasingly, modellers have also harnessed the genomic revo-
lution to make better predictions in the absence of detailed infor-
mation on microbiological mechanisms. Genomes are inherently 
high-dimensional data that encode both meaningful phenotypes 
and residual signals of coevolution, and they can be used as fea-
tures for both host and virus nodes in a network. Usually, genomes 
are analysed by quantifying the usage of dinucleotides, codons and 
codon pairs; in more advanced cases, these can be augmented with 
data on amino acid biochemistry, protein–protein interactions53 or 
longer k-mers72. In the near-term future, these datasets may increas-
ingly be supported by machine learning tools that predict protein 
folding structures73,74. A number of studies have begun using these 
genomic features in various forms of link prediction, includ-
ing predicting reservoir taxonomic orders10, characterizing the 
broad host and vector associations of flaviviruses75, and predicting  
the zoonotic potential of circulating strains of avian influenza53,54 
(Box 1) and animal viruses more broadly76. Researchers have par-
ticularly advanced these methods while studying host–bacterio-
phage networks77, integrating genomic data into network-based 
frameworks with other predictors10,77 and exploring the potential 
for deep learning to identify genes or genomic features that control 
host specificity or virulence78. These approaches can even be useful 
in practical outbreak investigation, for example one recent study 
predicted the reservoirs of three dozen ‘orphan viruses’ with murky 
origins (for example, the Bas-Congo virus is predicted to be a virus 
of even-toed ungulates10).

In combination with these growing sources of data on host–
virus interactions, researchers have increasingly started using net-
work science to make more complex and more powerful predictive 
models. The structure of the host–virus network is determined by 
unobserved biological processes with identifiable signals; tools from 
graph theory and network science can recover this hidden informa-
tion and leverage it for better prediction. Often, these recommen-
dations rely on pairwise dissimilarity of virus communities among 
hosts or vice versa27, or on the degree distributions of viruses and 
hosts37. These approaches can be supplemented with phylogenetic 

or ecological traits fairly easily27,37, or even with genomic data77. 
More sophisticated ways of leveraging network structure have been 
developed in computer science, but they remain largely untested 
on viral networks; in particular, as network data expand — in both 
the number of associations and the dimensionality of predictors 
— the door for deep learning methods, such as collaborative filter-
ing79 and neural networks, will also open80. The surprising strength 
of these methods for other link prediction tasks — from protein–
protein interaction networks to online social network or shopping 
algorithms — makes this avenue particularly promising. Many of 
these approaches rely on graph embedding, a set of methods that 
use matrix algebra to generate a small number of feature vectors, 
which encode information about relationships between nodes 
or the graph as a whole81; these features can be used to improve 
link prediction or to add a network component to other kinds of 
models. For example, one recent study imputed missing links in  
the mammal–virus network using machine learning, generated 
graph embeddings of the derived network and used these features 

Box 1 | influenza as a prediction system

Over the past century, the world has faced five pandemics of in-
fluenza A virus (1918, H1N1; 1957, H2N2; 1968, H3N2; 1977, 
H1N1; and 2009, H1N1), motivating unparalleled political will-
power and sustained investment; as a result, influenza is the only 
pandemic threat with a globally coordinated One Health surveil-
lance infrastructure106. Zoonotic lineages of influenza A usually 
emerge through agriculture, particularly, from both poultry and 
swine, which are readily monitored; they originate in wild avian 
species107–110, which can be easily trapped, sampled, tagged and 
released111; sampling is often most needed in areas of the world 
conducive to fieldwork, often without the provision of extensive 
personal protective equipment; and laboratory work can often 
occur in biosafety level 2 (BSL2) labs due to the low pathogenic-
ity of most viruses112. Influenza surveillance also upholds an in-
comparable model of open data sharing, with tens of thousands 
of viral genomes from humans, livestock and wild birds available 
from databases such as GISAID (gisaid.org) and the Influenza Re-
search Database (fludb.org). Through loss- and gain-of-function 
studies, site-directed mutagenesis and other host–pathogen in-
teraction studies in vitro and in vivo, researchers have been able 
to elucidate key mechanisms for viral attachment, entry, replica-
tion, virulence, immune evasion and transmission. As a result, 
the barriers and pathways to cross-species influenza transmis-
sion are better understood than they are for almost every other 
vertebrate pathogen (although there may still be some surprises 
waiting to be discovered outside mammals and birds113), to the 
point that virologists can identify the specific mutations that 
have facilitated zoonotic emergence and increased the transmis-
sibility of pandemic strains114. Owing to the same surplus of data, 
modellers can also develop tools that distinguish lineage-specific 
zoonotic risk from nucleotide, protein and genome-wide signa-
tures on a scale that could only be dreamed of for comparable 
threats53,54. Though some integration remains to be done between 
experimental findings and modelling efforts, and researchers 
should be cautious about overpromising, existing models show 
substantial promise. For example, the FluLeap model was able to 
correctly identify the first documented case of human-infective 
H5N8 (A/Astrakhan/3212/2020) as such, despite the absence 
of any previous human-infective H5N8 sequences in the train-
ing dataset115. These advances highlight the value of open data, 
international coordination and political priority on pandemic 
prevention research and the direct path from those principles to 
advances in host–virus predictive modelling.
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to substantially improve the performance of a genomics-based 
classifier of viral zoonotic potential28. By using these kinds of com-
putational tools to characterize the structure of the global virome, 
scientists may be able to translate a broader understanding of the 
rules of cross-species transmission into applied problems such as 
zoonotic risk prediction.

From models to actionable science
Opportunities to apply these models to high-impact problems are 
abundant, albeit mostly unexplored. For example, host inference 
models can help target fieldwork during the early stages of zoonotic 
outbreaks, when origins are unclear (for example, the SARS-CoV-2 
pandemic56) or when a familiar virus emerges in an unusual loca-
tion (for example, Nipah virus in Kerala, India41). These models can 
also be used to target wildlife sampling more efficiently. Viral dis-
covery is still expensive at scale: the USAID PREDICT programme 
spent over US$200 million to discover roughly 1,000 novel wild-
life viruses in 10 years18, and the proposed Global Virome Project 
would aim to spend US$1 billion over the next decade discovering a 
million more8. Future programmes such as these present an oppor-
tunity to test model-guided approaches as both a cost-saving mea-
sure and shortcut to accelerate scientific progress. Once wildlife 
viruses are discovered and characterized, their zoonotic potential 
can be predicted as part of the first scientific report describing their 
existence82, helping virologists triage laboratory characterization; 
these tools may increasingly be paired with models that aim to pre-
dict dimensions of epidemic potential, such as human-to-human 
transmissibility45,50 and pathogen virulence13, which often use 
the same core datasets and machine learning approaches that are 
used to predict zoonotic potential. Once priority risks have been 
identified, managers can implement longitudinal, multi-site sam-
pling programmes that can inform (and support other models that 
predict) where and when people are at risk of zoonotic spillover. 
Similarly, modelling approaches that integrate data on surveil-
lance and health systems can help understand where those spill-
overs are most likely to go undetected14 and spread quickly15. When 
integrated into one pipeline, these different approaches capture 
all three components of risk: hazard (what the threat is), exposure 
(where and when it occurs) and vulnerability (what the potential 
disease burden is, and for whom).

Building predictive models into this pipeline requires that 
researchers, practitioners and stakeholders have confidence in these 
approaches. To refine existing models, formalize best practices and 
convince sceptics (including both colleagues and stakeholders) of 
the value of this work, modellers need to measure and report model 
performance in a way that is open, transparent and accountable. 
Developing standardized meta-datasets26 and forming collaborative 
teams (for example, the Verena Consortium; see viralemergence.
org) can facilitate multi-model study designs that are commonplace 
in statistical research, such as ensemble models or ‘bake-offs’ testing 
predictive accuracy. However, these are only a step in the required 
direction. Actionable forecasting is an iterative process83, and add-
ing feedback loops to the modelling process would help researchers 
to measure the accuracy of specific approaches, validate or falsify 
model-generated hypotheses and, ultimately, make more sound, 
actionable inference about the global virome. A lack of feedback 
among field, experimental and modelling approaches currently 
precludes that process of refinement; when predictions are tested, 
it has mostly been ad hoc. For example, one recent field study84 
confirmed model predictions of bat filovirus hosts11, while another 
found no support85; a recent experimental study86 more definitively 
refuted another prediction about bat reservoirs of Nipah virus41. 
These kinds of data are rarely fed back into modelling efforts and 
are almost never pursued prospectively. In a unique counterexam-
ple, we recently generated eight predictive models of undiscovered 
bat hosts of betacoronaviruses and tracked their performance over 
more than a year as new viral discoveries were reported56. We found 
that biology-agnostic network models performed no better than 
random predictions, while machine learning and network models 
that also leveraged data on bat biology made strong, accurate pre-
dictions. Using measures of model performance, we were able to 
weight a predictive ensemble to make more accurate predictions, 
and the updated list of potential undiscovered hosts can now be 
confidently used to target the screening of samples from field sur-
veys and biological collections. This example highlights several best 
practices for actionable prediction: making predictions public and 
interpretable, tracking predictive accuracy over time, and incor-
porating new data into dynamic predictions that keep pace with 
changing scientific knowledge.

We suggest that future sampling efforts would best complement 
modelling efforts by following up on actionable (high zoonotic risk) 
leads for public health priorities, as suggested by both expert knowl-
edge and predictive models. If model-generated hypotheses turn out 
to be largely incorrect, this can help to identify spurious assump-
tions about a virus’s ecology or identify modelling approaches 
unsuited for future use; on the other hand, if accurate and effec-
tive, these integrated approaches will save time and resources dur-
ing outbreaks. This will require researchers to match the scope of 
predictions to the nature of an intended outcome, for example host 
inference models are used to suggest gaps in known reservoirs11,41,56, 
and sampling these hosts first can reduce the cost of viral discovery. 
Similarly, models that predict viral zoonotic potential can identify 
threats to human health before the first case of infection28,76; in the 
near-term future, these tools could be used to identify which wild-
life viruses should be the focus of testing for new therapeutics and 
candidate universal vaccines. Matching predictions to purpose will 
also help to identify potential barriers to implementation; these are 
discussed more extensively elsewhere87.

Conclusions
The promise of host–virus network prediction should be met with 
cautious enthusiasm, particularly with regard to zoonotic risk. These 
models still face many challenges in practice, and a well-trained sci-
entist may be able to identify many of the same patterns or risks as 
the most advanced predictive models would. For example, a beta-
coronavirus pandemic was almost inevitable, not just because the 

Box 2 | Coronaviruses past and future

The challenges of actionable science are particularly evident 
in the history of coronavirus epidemics. The emergence of 
SARS-CoV in 2002 was a historical landmark and a major mo-
tivating force in viral ecology research, but while SARS-CoV is 
often referenced in the rationale for modelling studies (usually 
alongside Ebola virus and Zika virus, among others), few stud-
ies have actually used modelling to explore coronavirus ecology. 
Many of the models that exist today could have been useful in 
the past two decades, as SARS-CoV and MERS-CoV outbreaks 
increasingly highlighted the threat these viruses posed to health 
security (Fig. 3). Perhaps the diverse tools developed today for 
SARS-CoV-2 will fill some of these gaps in the future, for exam-
ple data on ACE2 receptors have been used to make broad pre-
dictions about possible host range and origins of SARS-CoV-2 
(refs. 51,67). Machine learning methods have been used to propose 
possible reservoirs of SARS-CoV-2 or close relatives and identify 
possible undiscovered reservoirs of betacoronaviruses56,116. Deep 
learning with genomic data has even been used to generate ‘arti-
ficial’ coronavirus spike protein sequences117 and to begin devel-
oping technology that may identify genomic features encoding 
cell entry or pathogenesis that predispose zoonotic potential78.
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zoonotic potential of bat viruses, which had been confirmed experi-
mentally, but also because there had been two previous outbreaks of 
zoonotic betacoronaviruses and insufficiently responsive policy and 
planning (SARS and MERS (Middle East respiratory syndrome); 
Box 2 and Fig. 3).

Just as ‘virus hunting’ has been insufficient to stem the emer-
gence, re-emergence or global spread of several major viral threats18, 
there are obstacles to turning model-based predictions into disease 
prevention. Even with massive efforts to mitigate upstream drivers 
of disease emergence (and quantitative modelling to target those 
interventions), spillover risk will never be reduced to zero—espe-
cially for unknown threats—and after the first human case, the 
actual levers of pandemic prevention will always lie in diagnostic 
and surveillance capacity, healthcare access, social safety nets and 
health system investment—not the tools we discuss here.

However, as future threats emerge, modelling will be a key 
tool for rapid scientific inquiry, particularly given how much still 
remains unknown about the global virome. Although scientists may 
never be able to ‘predict and prevent the next pandemic’, a renewed 
vision of this work — ‘prediction’ as the development of quantitative 
tools that can learn the rules of life underpinning host–virus inter-
actions and apply them to information-limited problems to benefit 
human health and the environment — could be an invaluable step 
towards true preparedness.

These approaches will help virologists to explore the ecology 
and evolution of coronaviruses and to build a data-driven risk 
assessment infrastructure along the lines of the global influenza 

monitoring system. But there is still no guarantee that the next 
SARS-like pandemic could be ‘predicted and prevented’, particu-
larly given that the risk of a pandemic such as COVID-19 was ‘pre-
dicted’ for two decades by virologists on the basis of other kinds of 
scientific evidence88,89. Downstream problems preventing the trans-
lation of scientific knowledge to public health responses cannot 
be entirely solved through actionable science; no amount of viral 
discovery, laboratory characterization, modelling and risk assess-
ment can solve vulnerability due to weak healthcare infrastructure 
and insufficient funding continuity and support for pandemic pre-
paredness18. Knowing where SARS-CoV-2 came from may help us 
to target surveillance and slow the emergence of similar viruses, but 
another highly transmissible coronavirus will inevitably emerge in 
humans someday. Developing a universal vaccine that protects 
against bat coronaviruses with predicted zoonotic potential, build-
ing pandemic preparedness frameworks that include international 
governance of vaccine sharing and production, and developing 
responsive health systems with better syndromic detection of early 
outbreaks could be enough to achieve a future that never sees 
another coronavirus pandemic.
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